Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Autocorrelation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Autocorrelation of random vectors{{anchor|Matrix}}== The (potentially time-dependent) '''autocorrelation matrix''' (also called second moment) of a (potentially time-dependent) [[random vector]] <math>\mathbf{X} = (X_1,\ldots,X_n)^{\rm T}</math> is an <math>n \times n</math> matrix containing as elements the autocorrelations of all pairs of elements of the random vector <math>\mathbf{X}</math>. The autocorrelation matrix is used in various [[digital signal processing]] algorithms. For a [[random vector]] <math>\mathbf{X} = (X_1,\ldots,X_n)^{\rm T}</math> containing [[random element]]s whose [[expected value]] and [[variance]] exist, the '''autocorrelation matrix''' is defined by<ref name=Papoulis>Papoulis, Athanasius, ''Probability, Random variables and Stochastic processes'', McGraw-Hill, 1991</ref>{{rp|p.190}}<ref name=Gubner/>{{rp|p.334}} {{Equation box 1 |indent = : |title= |equation = <math>\operatorname{R}_{\mathbf{X}\mathbf{X}} \triangleq\ \operatorname{E} \left[ \mathbf{X} \mathbf{X}^{\rm T} \right] </math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} where <math>{}^{\rm T}</math> denotes the [[transpose]]d matrix of dimensions <math>n \times n</math>. Written component-wise: <math display=block>\operatorname{R}_{\mathbf{X}\mathbf{X}} = \begin{bmatrix} \operatorname{E}[X_1 X_1] & \operatorname{E}[X_1 X_2] & \cdots & \operatorname{E}[X_1 X_n] \\ \\ \operatorname{E}[X_2 X_1] & \operatorname{E}[X_2 X_2] & \cdots & \operatorname{E}[X_2 X_n] \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \operatorname{E}[X_n X_1] & \operatorname{E}[X_n X_2] & \cdots & \operatorname{E}[X_n X_n] \\ \\ \end{bmatrix} </math> If <math>\mathbf{Z}</math> is a [[complex random vector]], the autocorrelation matrix is instead defined by <math display=block>\operatorname{R}_{\mathbf{Z}\mathbf{Z}} \triangleq\ \operatorname{E}[\mathbf{Z} \mathbf{Z}^{\rm H}] .</math> Here <math>{}^{\rm H}</math> denotes [[Hermitian transpose]]. For example, if <math>\mathbf{X} = \left( X_1,X_2,X_3 \right)^{\rm T}</math> is a random vector, then <math>\operatorname{R}_{\mathbf{X}\mathbf{X}}</math> is a <math>3 \times 3</math> matrix whose <math>(i,j)</math>-th entry is <math>\operatorname{E}[X_i X_j]</math>. ===Properties of the autocorrelation matrix=== * The autocorrelation matrix is a [[Hermitian matrix]] for complex random vectors and a [[symmetric matrix]] for real random vectors.<ref name=Papoulis />{{rp|p.190}} * The autocorrelation matrix is a [[positive semidefinite matrix]],<ref name=Papoulis />{{rp|p.190}} i.e. <math>\mathbf{a}^{\mathrm T} \operatorname{R}_{\mathbf{X}\mathbf{X}} \mathbf{a} \ge 0 \quad \text{for all } \mathbf{a} \in \mathbb{R}^n</math> for a real random vector, and respectively <math>\mathbf{a}^{\mathrm H} \operatorname{R}_{\mathbf{Z}\mathbf{Z}} \mathbf{a} \ge 0 \quad \text{for all } \mathbf{a} \in \mathbb{C}^n</math> in case of a complex random vector. * All eigenvalues of the autocorrelation matrix are real and non-negative. * The ''auto-covariance matrix'' is related to the autocorrelation matrix as follows:<!-- --><math display=block>\operatorname{K}_{\mathbf{X}\mathbf{X}} = \operatorname{E}[(\mathbf{X} - \operatorname{E}[\mathbf{X}])(\mathbf{X} - \operatorname{E}[\mathbf{X}])^{\rm T}] = \operatorname{R}_{\mathbf{X}\mathbf{X}} - \operatorname{E}[\mathbf{X}] \operatorname{E}[\mathbf{X}]^{\rm T}</math><!-- -->Respectively for complex random vectors:<!-- --><math display=block>\operatorname{K}_{\mathbf{Z}\mathbf{Z}} = \operatorname{E}[(\mathbf{Z} - \operatorname{E}[\mathbf{Z}])(\mathbf{Z} - \operatorname{E}[\mathbf{Z}])^{\rm H}] = \operatorname{R}_{\mathbf{Z}\mathbf{Z}} - \operatorname{E}[\mathbf{Z}] \operatorname{E}[\mathbf{Z}]^{\rm H}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)