Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
B-spline
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Cubic B-Splines == A cubic B-spline curve <math>\mathbf{C}(t)</math> with a normalized parameter <math>t \in [0,1]</math> is defined by four nodes (i.e. ''[[Control point (mathematics)|control points]]'') <math>\textbf{b}_0</math>, <math>\textbf{b}_1</math>, <math>\textbf{b}_2</math>, and <math>\textbf{b}_3</math>. It forms a polynomial of degree 3 that can be written as : <math>\mathbf{C}(t) = \frac{1}{6} \; \begin{bmatrix}t^3 & t^2 & t & 1\end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1\\ 3 & -6 & 3 & 0\\ -3 & 0 & 3 & 0\\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix}\mathbf{b}_0\\\mathbf{b}_1\\\mathbf{b}_2\\\mathbf{b}_3 \end{bmatrix} </math>. This corresponds to B-spline polynomials : <math>\begin{align} B_0(t) &= \frac{1}{6} ( -t^3 + 3t^2 - 3t + 1 )\\ B_1(t) &= \frac{1}{6} ( 3t^3 - 6t^2 + 4 )\\ B_2(t) &= \frac{1}{6} ( -3t^3 + 3t^2 + 3t + 1 )\\ B_3(t) &= \frac{1}{6} t^3 \end{align} </math> and the curve can be evaluated as <math>\mathbf{C}(t) = \sum_{i=0}^3 B_i(t)\,\mathbf{b}_i</math>. Expanding this, we can write the full polynomial form as below : <math>\mathbf{C}(t) = \frac{1}{6} \biggl( (-\mathbf{b}_0 + 3\mathbf{b}_1 - 3\mathbf{b}_2 + \mathbf{b}_3 ) t^3 + ( 3\mathbf{b}_0 - 6\mathbf{b}_1 + 3\mathbf{b}_2 ) t^2 + ( -3\mathbf{b}_0 + 3\mathbf{b}_2 ) t + ( \mathbf{b}_0 + 4\mathbf{b}_1 + \mathbf{b}_2 ) \biggr) </math>. Since this is a cubic polynomial, we can also write it as a cubic [[Bézier curve]] with control points <math>\textbf{P}_0</math>, <math>\textbf{P}_1</math>, <math>\textbf{P}_2</math>, and <math>\textbf{P}_3</math>, such that : <math>\begin{align} \mathbf{P}_0 &= \frac{1}{6} ( \mathbf{b}_0 + 4\mathbf{b}_1 + \mathbf{b}_2 ), \\ \mathbf{P}_1 &= \frac{1}{3} ( 2\mathbf{b}_1 + \mathbf{b}_2 ), \\ \mathbf{P}_2 &= \frac{1}{3} ( \mathbf{b}_1 + 2\mathbf{b}_2 ), \\ \mathbf{P}_3 &= \frac{1}{6} ( \mathbf{b}_1 + 4\mathbf{b}_2 + \mathbf{b}_3 ). \end{align} </math> A piecewise cubic B-spline is formed by a set of nodes and each four consecutive nodes define a cubic piece of the curve with the formulation above.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)