Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Barycentric coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Distance between points=== The displacement vector of two normalized points <math>P=(p_1,p_2,p_3)</math> and <math>Q=(q_1,q_2,q_3)</math> is<ref name=Olympiad/> <math display=block>\overset{}\overrightarrow{P Q}=(p_1-q_1,p_2-q_2,p_3-q_3).</math> The distance {{mvar|d}} between {{mvar|P}} and {{mvar|Q}}, or the length of the displacement vector <math>\overset{}\overrightarrow{P Q}=(x,y,z),</math> is<ref name=Scott/><ref name=Olympiad/> <math display=block>\begin{align} d^2 &= |PQ|^2 \\[2pt] &= -a^2yz - b^2zx - c^2xy \\[4pt] &= \frac{1}{2} \left[x^2(b^2+c^2-a^2) + y^2(c^2+a^2-b^2) + z^2(a^2+b^2-c^2)\right]. \end{align}</math> where ''a, b, c'' are the sidelengths of the triangle. The equivalence of the last two expressions follows from <math>x+y+z=0,</math> which holds because <math display=block>\begin{align} x+y+z &= (p_1-q_1) + (p_2-q_2) + (p_3-q_3) \\[2pt] &= (p_1+p_2+p_3) - (q_1+q_2+q_3) \\[2pt] &= 1 - 1 = 0. \end{align}</math> The barycentric coordinates of a point can be calculated based on distances ''d''<sub>''i''</sub> to the three triangle vertices by solving the equation <math display=block> \left(\begin{matrix} -c^2 & c^2 & b^2-a^2 \\ -b^2 & c^2-a^2 & b^2 \\ 1 & 1 & 1 \end{matrix}\right)\boldsymbol{\lambda} = \left(\begin{matrix} d^2_A - d^2_B \\ d^2_A - d^2_C \\ 1 \end{matrix}\right).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)