Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bell polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Derivatives=== The partial derivatives of the complete Bell polynomials are given by{{Sfn|Bell|1934|loc=identity (5.1) on p. 266}} : <math> \frac{\partial B_{n}}{\partial x_i} (x_1, \ldots, x_{n}) = \binom{n}{i} B_{n-i}(x_1, \ldots, x_{n-i}).</math> Similarly, the partial derivatives of the partial Bell polynomials are given by : <math> \frac{\partial B_{n,k}}{\partial x_i} (x_1, \ldots, x_{n-k+1}) = \binom{n}{i} B_{n-i,k-1}(x_1, \ldots, x_{n-i-k+2}).</math> If the arguments of the Bell polynomials are one-dimensional functions, the chain rule can be used to obtain : <math> \frac{d}{dx} \left(B_{n,k}(a_1(x), \cdots, a_{n-k+1}(x))\right) = \sum_{i=1}^{n-k+1} \binom{n}{i} a_i'(x) B_{n-i,k-1}(a_1(x), \cdots, a_{n-i-k+2}(x)).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)