Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Maximum and minimum== At higher {{mvar|n}} the amount of variation in <math>B_n(x)</math> between <math>x = 0</math> and <math>x = 1</math> gets large. For instance, <math>B_{16}(0) = B_{16}(1) = {}</math><math> -\tfrac{3617}{510} \approx -7.09,</math> but <math>B_{16}\bigl(\tfrac12\bigr) = {}</math><math>\tfrac{118518239}{3342336} \approx 7.09.</math> {{nobr|[[D.H. Lehmer|Lehmer]] (1940)<ref>{{cite journal |first=D.H. |last=Lehmer |author-link=D.H. Lehmer |year=1940 |title=On the maxima and minima of Bernoulli polynomials |journal=[[American Mathematical Monthly]] |volume=47 |issue=8 |pages=533β538 |doi=10.1080/00029890.1940.11991015 }}</ref>}} showed that the maximum value ({{mvar|M{{sub|n}}}}) of <math>B_n(x)</math> between {{math|0}} and {{math|1}} obeys <math display="block">M_n < \frac{2n!}{(2\pi)^n}</math> unless {{mvar|n}} is {{nobr|{{math|2 modulo 4}},}} in which case <math display="block">M_n = \frac{2\zeta (n)\,n!}{(2\pi)^n}</math> (where <math>\zeta(x)</math> is the [[Riemann zeta function]]), while the minimum ({{mvar|m{{sub|n}}}}) obeys <math display="block">m_n > \frac{ -2 n!}{(2\pi)^n}</math> unless {{nobr| {{math|1=''n'' = 0 modulo 4 }} ,}} in which case <math display="block">m_n = \frac{-2 \zeta(n)\,n! }{(2\pi)^n}.</math> These limits are quite close to the actual maximum and minimum, and Lehmer gives more accurate limits as well.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)