Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bessel function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spherical Bessel functions: ''j<sub>n</sub>'', ''y<sub>n</sub>'' <span class="anchor" id="Spherical Bessel functions"></span> === [[File:Plot of the spherical Bessel function of the first kind j n(z) with n=0.5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|thumb|Plot of the spherical Bessel function of the first kind {{math|''j<sub>n</sub>''(''z'')}} with {{math|1=''n'' = 0.5}} in the complex plane from {{math|β2 β 2''i''}} to {{math|2 + 2''i''}} with colors created with Mathematica 13.1 function ComplexPlot3D]] [[File:Plot of the spherical Bessel function of the second kind y n(z) with n=0.5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|thumb|Plot of the spherical Bessel function of the second kind {{math|''y<sub>n</sub>''(''z'')}} with {{math|1=''n'' = 0.5}} in the complex plane from {{math|β2 β 2''i''}} to {{math|2 + 2''i''}} with colors created with Mathematica 13.1 function ComplexPlot3D]] [[File:Sphericalbesselj.png|thumb|350px|right|Spherical Bessel functions of the first kind <math> j_\alpha(x)</math>, for <math>\alpha = 0,1,2</math>.]] [[File:Sphericalbessely.png|thumb|350px|right|Spherical Bessel functions of the second kind <math> y_\alpha(x)</math>, for <math>\alpha = 0,1,2</math>.]] When solving the [[Helmholtz equation]] in spherical coordinates by separation of variables, the radial equation has the form <math display="block">x^2 \frac{d^2 y}{dx^2} + 2x \frac{d y}{dx} +\left(x^2 - n(n + 1)\right) y = 0.</math> The two linearly independent solutions to this equation are called the '''spherical Bessel functions''' {{mvar|j<sub>n</sub>}} and {{mvar|y<sub>n</sub>}}, and are related to the ordinary Bessel functions {{mvar|J<sub>n</sub>}} and {{mvar|Y<sub>n</sub>}} by<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_437.htm p. 437, 10.1.1].</ref> <math display="block">\begin{align} j_n(x) &= \sqrt{\frac{\pi}{2x}} J_{n+\frac{1}{2}}(x), \\ y_n(x) &= \sqrt{\frac{\pi}{2x}} Y_{n+\frac{1}{2}}(x) = (-1)^{n+1} \sqrt{\frac{\pi}{2x}} J_{-n-\frac{1}{2}}(x). \end{align}</math> {{mvar|y<sub>n</sub>}} is also denoted {{mvar|n<sub>n</sub>}} or {{mvar|[[Eta (letter)|Ξ·]]<sub>n</sub>}}; some authors call these functions the '''spherical Neumann functions'''. From the relations to the ordinary Bessel functions it is directly seen that: <math display="block">\begin{align} j_n(x) &= (-1)^{n} y_{-n-1} (x) \\ y_n(x) &= (-1)^{n+1} j_{-n-1}(x) \end{align}</math> The spherical Bessel functions can also be written as ('''{{va|Rayleigh's formulas}}''')<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_439.htm p. 439, 10.1.25, 10.1.26].</ref> <math display="block">\begin{align} j_n(x) &= (-x)^n \left(\frac{1}{x}\frac{d}{dx}\right)^n \frac{\sin x}{x}, \\ y_n(x) &= -(-x)^n \left(\frac{1}{x}\frac{d}{dx}\right)^n \frac{\cos x}{x}. \end{align}</math> The zeroth spherical Bessel function {{math|''j''<sub>0</sub>(''x'')}} is also known as the (unnormalized) [[sinc function]]. The first few spherical Bessel functions are:<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_438.htm p. 438, 10.1.11].</ref> <math display="block">\begin{align} j_0(x) &= \frac{\sin x}{x}. \\ j_1(x) &= \frac{\sin x}{x^2} - \frac{\cos x}{x}, \\ j_2(x) &= \left(\frac{3}{x^2} - 1\right) \frac{\sin x}{x} - \frac{3\cos x}{x^2}, \\ j_3(x) &= \left(\frac{15}{x^3} - \frac{6}{x}\right) \frac{\sin x}{x} - \left(\frac{15}{x^2} - 1\right) \frac{\cos x}{x} \end{align}</math> and<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_438.htm p. 438, 10.1.12].</ref> <math display="block">\begin{align} y_0(x) &= -j_{-1}(x) = -\frac{\cos x}{x}, \\ y_1(x) &= j_{-2}(x) = -\frac{\cos x}{x^2} - \frac{\sin x}{x}, \\ y_2(x) &= -j_{-3}(x) = \left(-\frac{3}{x^2} + 1\right) \frac{\cos x}{x} - \frac{3\sin x}{x^2}, \\ y_3(x) &= j_{-4}(x) = \left(-\frac{15}{x^3} + \frac{6}{x}\right) \frac{\cos x}{x} - \left(\frac{15}{x^2} - 1\right) \frac{\sin x}{x}. \end{align}</math> The first few non-zero roots of the first few spherical Bessel functions are: {| class="wikitable sortable" |+ Non-zero Roots of the Spherical Bessel Function (first kind) ! Order !! Root 1 !! Root 2 !! Root 3 !! Root 4 !! Root 5 |- | <math>j_{0}</math> || 3.141593 || 6.283185 || 9.424778 || 12.566371 || 15.707963 |- | <math>j_{1}</math> || 4.493409 || 7.725252 || 10.904122 || 14.066194 || 17.220755 |- | <math>j_{2}</math> || 5.763459 || 9.095011 || 12.322941 || 15.514603 || 18.689036 |- | <math>j_{3}</math> || 6.987932 || 10.417119 || 13.698023 || 16.923621 || 20.121806 |- | <math>j_{4}</math> || 8.182561 || 11.704907 || 15.039665 || 18.301256 || 21.525418 |} {| class="wikitable sortable" |+ Non-zero Roots of the Spherical Bessel Function (second kind) ! Order !! Root 1 !! Root 2 !! Root 3 !! Root 4 !! Root 5 |- | <math>y_{0}</math> || 1.570796 || 4.712389 || 7.853982 || 10.995574 || 14.137167 |- | <math>y_{1}</math> || 2.798386 || 6.121250 || 9.317866 || 12.486454 || 15.644128 |- | <math>y_{2}</math> || 3.959528 || 7.451610 || 10.715647 || 13.921686 || 17.103359 |- | <math>y_{3}</math> || 5.088498 || 8.733710 || 12.067544 || 15.315390 || 18.525210 |- | <math>y_{4}</math> || 6.197831 || 9.982466 || 13.385287 || 16.676625 || 19.916796 |} ==== Generating function ==== The spherical Bessel functions have the generating functions<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_439.htm p. 439, 10.1.39].</ref> <math display="block">\begin{align} \frac{1}{z} \cos \left(\sqrt{z^2 - 2zt}\right) &= \sum_{n=0}^\infty \frac{t^n}{n!} j_{n-1}(z), \\ \frac{1}{z} \sin \left(\sqrt{z^2 - 2zt}\right) &= \sum_{n=0}^\infty \frac{t^n}{n!} y_{n-1}(z). \end{align}</math> ==== Finite series expansions ==== In contrast to the whole integer Bessel functions {{math|''J''<sub>n</sub>(''x''), ''Y''<sub>n</sub>(''x'')}}, the spherical Bessel functions {{math|''j''<sub>n</sub>(''x''), ''y''<sub>n</sub>(''x'')}} have a finite series expression:<ref>L.V. Babushkina, M.K. Kerimov, A.I. Nikitin, Algorithms for computing Bessel functions of half-integer order with complex arguments, [https://www.sciencedirect.com/science/article/pii/0041555388900183 p. 110, p. 111].</ref> <math display="block">\begin{alignat}{2} j_n(x) &= \sqrt{\frac{\pi}{2x}}J_{n+\frac{1}{2}}(x) = \\ &= \frac{1}{2x} \left[ e^{ix} \sum_{r=0}^n \frac{i^{r-n-1}(n+r)!}{r!(n-r)!(2x)^r} + e^{-ix} \sum_{r=0}^n \frac{(-i)^{r-n-1}(n+r)!}{r!(n-r)!(2x)^r} \right] \\ &= \frac{1}{x} \left[ \sin\left(x-\frac{n\pi}{2}\right) \sum_{r=0}^{\left[ \frac{n}{2} \right]} \frac{(-1)^r (n+2r)!}{(2r)!(n-2r)!(2x)^{2r}} + \cos\left(x-\frac{n\pi}{2}\right) \sum_{r=0}^{\left[ \frac{n-1}{2} \right]} \frac{(-1)^r (n+2r+1)!}{(2r+1)!(n-2r-1)!(2x)^{2r+1}} \right] \\ y_n(x) &= (-1)^{n+1} j_{-n-1}(x) = (-1)^{n+1} \frac{\pi}{2x}J_{-\left(n+\frac{1}{2}\right)}(x) = \\ &= \frac{(-1)^{n+1}}{2x} \left[ e^{ix} \sum_{r=0}^n \frac{i^{r+n}(n+r)!}{r!(n-r)!(2x)^r} + e^{-ix} \sum_{r=0}^n \frac{(-i)^{r+n}(n+r)!}{r!(n-r)!(2x)^r} \right] = \\ &= \frac{(-1)^{n+1}}{x} \left[ \cos\left(x+\frac{n\pi}{2}\right) \sum_{r=0}^{\left[ \frac{n}{2} \right]} \frac{(-1)^r (n+2r)!}{(2r)!(n-2r)!(2x)^{2r}} - \sin\left(x+\frac{n\pi}{2}\right) \sum_{r=0}^{\left[ \frac{n-1}{2} \right]} \frac{(-1)^r (n+2r+1)!}{(2r+1)!(n-2r-1)!(2x)^{2r+1}} \right] \end{alignat}</math> ==== Differential relations ==== In the following, {{mvar|f<sub>n</sub>}} is any of {{mvar|j<sub>n</sub>}}, {{mvar|y<sub>n</sub>}}, {{math|''h''{{su|b=''n''|p=(1)}}}}, {{math|''h''{{su|b=''n''|p=(2)}}}} for {{math|1=''n'' = 0, Β±1, Β±2, ...}}<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_439.htm p. 439, 10.1.23, 10.1.24].</ref> <math display="block">\begin{align} \left(\frac{1}{z}\frac{d}{dz}\right)^m \left (z^{n+1} f_n(z)\right ) &= z^{n-m+1} f_{n-m}(z), \\ \left(\frac{1}{z}\frac{d}{dz}\right)^m \left (z^{-n} f_n(z)\right ) &= (-1)^m z^{-n-m} f_{n+m}(z). \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)