Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bin packing problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Multiplicative approximation === The simplest technique used by offline approximation schemes is the following: * Ordering the input list by descending size; * Run an online algorithm on the ordered list. Johnson<ref name="johnson732" /> proved that any AnyFit scheme A that runs on a list ordered by descending size has an asymptotic approximation ratio of<blockquote><math>1.22 \approx \frac{11}{9} \leq R^{\infty}_A \leq \frac{5}{4} = 1.25</math>.</blockquote>Some methods in this family are (see the linked pages for more information): * '''[[First-fit-decreasing bin packing|First-fit-decreasing]] (FFD)''' orders the items by descending size, then calls First-Fit. Its approximation ratio is <math>FFD(I) = \frac{11}9 \mathrm{OPT}(I) + \frac 6 9</math>, and this is tight.<ref name="Dosa072">{{cite journal|last1=Dósa|first1=György|date=2007|title=The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD(I) ≤ 11/9\mathrm{OPT}(I) + 6/9|journal=Combinatorics, Algorithms, Probabilistic and Experimental Methodologies. ESCAPE|doi=10.1007/978-3-540-74450-4_1}}</ref> * '''[[Next-fit-decreasing]] (NFD)''' orders the items by descending size, then calls [[Next-fit bin packing|Next-Fit]]. Its approximate ratio is slightly less than 1.7 in the worst case.<ref>{{Cite journal|last1=Baker|first1=B. S.|last2=Coffman|first2=Jr., E. G.|date=1981-06-01|title=A Tight Asymptotic Bound for Next-Fit-Decreasing Bin-Packing|url=https://epubs.siam.org/doi/abs/10.1137/0602019|journal=SIAM Journal on Algebraic and Discrete Methods|volume=2|issue=2|pages=147–152|doi=10.1137/0602019|issn=0196-5212}}</ref> It has also been analyzed probabilistically.<ref>{{Cite journal|last1=Csirik|first1=J.|last2=Galambos|first2=G.|last3=Frenk|first3=J.B.G.|last4=Frieze|first4=A.M.|last5=Rinnooy Kan|first5=A.H.G.|date=1986-11-01|title=A probabilistic analysis of the next fit decreasing bin packing heuristic|url=https://www.sciencedirect.com/science/article/abs/pii/0167637786900131|journal=Operations Research Letters|language=en|volume=5|issue=5|pages=233–236|doi=10.1016/0167-6377(86)90013-1|issn=0167-6377|hdl=1765/11645|s2cid=50663185 |hdl-access=free}}</ref> Next-Fit packs a list and its inverse into the same number of bins. Therefore, Next-Fit-Increasing has the same performance as Next-Fit-Decreasing.<ref>{{Cite journal|last1=Fisher|first1=David C.|date=1988-12-01|title=Next-fit packs a list and its reverse into the same number of bins|url=https://www.sciencedirect.com/science/article/abs/pii/0167637788900600|journal=Operations Research Letters|language=en|volume=7|issue=6|pages=291–293|doi=10.1016/0167-6377(88)90060-0|issn=0167-6377}}</ref> * '''[[Modified first-fit-decreasing]] (MFFD)<ref name="JohnsonGarey19852">{{cite journal|last1=Johnson|first1=David S|last2=Garey|first2=Michael R|date=October 1985|title=A 7160 theorem for bin packing|journal=Journal of Complexity|volume=1|issue=1|pages=65–106|doi=10.1016/0885-064X(85)90022-6|doi-access=free}}</ref>''', improves on FFD for items larger than half a bin by classifying items by size into four size classes large, medium, small, and tiny, corresponding to items with size > 1/2 bin, > 1/3 bin, > 1/6 bin, and smaller items respectively. Its approximation guarantee is <math>MFFD(I) \leq \frac {71}{60}\mathrm{OPT}(I) + 1</math>.<ref name="YueZhang19952">{{cite journal|last1=Yue|first1=Minyi|last2=Zhang|first2=Lei|date=July 1995|title=A simple proof of the inequality MFFD(L) ≤ 71/60 OPT(L) + 1,L for the MFFD bin-packing algorithm|journal=Acta Mathematicae Applicatae Sinica|volume=11|issue=3|pages=318–330|doi=10.1007/BF02011198|s2cid=118263129}}</ref> Fernandez de la Vega and Lueker<ref>{{cite journal|last1=Fernandez de la Vega|first1=W.|last2=Lueker|first2=G. S.|date=1981|title=Bin packing can be solved within 1 + ε in linear time|journal=Combinatorica|language=en|volume=1|issue=4|pages=349–355|doi=10.1007/BF02579456|issn=1439-6912|s2cid=10519631}}</ref> presented a [[Polynomial-time approximation scheme|PTAS]] for bin packing. For every <math>\varepsilon>0</math>, their algorithm finds a solution with size at most <math>(1+\varepsilon)\mathrm{OPT} + 1</math> and runs in time <math>\mathcal{O}(n\log(1/\varepsilon)) + \mathcal{O}_{\varepsilon}(1)</math>, where <math>\mathcal{O}_{\varepsilon}(1)</math> denotes a function only dependent on <math>1/\varepsilon</math>. For this algorithm, they invented the method of ''adaptive input rounding'': the input numbers are grouped and rounded up to the value of the maximum in each group. This yields an instance with a small number of different sizes, which can be solved exactly using the [[configuration linear program]].<ref>{{Cite web|last=Claire Mathieu|title=Approximation Algorithms Part I, Week 3: bin packing|url=https://www.coursera.org/learn/approximation-algorithms-part-1/home/week/3|url-status=live|website=Coursera|archive-url=https://web.archive.org/web/20210715093252/https://www.coursera.org/learn/approximation-algorithms-part-1/home/week/3 |archive-date=2021-07-15 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)