Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binary number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Later developments=== [[File:George Boole color.jpg|thumb|left|160px|George Boole]] In 1854, British mathematician [[George Boole]] published a landmark paper detailing an [[algebra]]ic system of [[logic]] that would become known as [[Boolean algebra (logic)|Boolean algebra]]. His logical calculus was to become instrumental in the design of digital electronic circuitry.<ref>{{cite book |last=Boole |first=George |orig-year=1854 |url=https://www.gutenberg.org/ebooks/15114 |title=An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities |publisher=Cambridge University Press |edition=Macmillan, Dover Publications, reprinted with corrections [1958] |location=New York |year=2009 |isbn=978-1-108-00153-3}}</ref> In 1937, [[Claude Shannon]] produced his master's thesis at [[MIT]] that implemented Boolean algebra and binary arithmetic using electronic relays and switches for the first time in history. Entitled ''[[A Symbolic Analysis of Relay and Switching Circuits]]'', Shannon's thesis essentially founded practical [[digital circuit]] design.<ref>{{cite thesis |title=A symbolic analysis of relay and switching circuits |last=Shannon |first=Claude Elwood |publisher=Massachusetts Institute of Technology |location=Cambridge |year=1940 |hdl=1721.1/11173 |type=Thesis }}</ref> In November 1937, [[George Stibitz]], then working at [[Bell Labs]], completed a relay-based computer he dubbed the "Model K" (for "'''K'''itchen", where he had assembled it), which calculated using binary addition.<ref>{{cite web |url=http://www.invent.org/hall_of_fame/140.html |title=National Inventors Hall of Fame – George R. Stibitz |date=20 August 2008 |access-date=5 July 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100709213530/http://www.invent.org/hall_of_fame/140.html |archive-date=9 July 2010}}</ref> Bell Labs authorized a full research program in late 1938 with Stibitz at the helm. Their Complex Number Computer, completed 8 January 1940, was able to calculate [[complex numbers]]. In a demonstration to the [[American Mathematical Society]] conference at [[Dartmouth College]] on 11 September 1940, Stibitz was able to send the Complex Number Calculator remote commands over telephone lines by a [[Teleprinter|teletype]]. It was the first computing machine ever used remotely over a phone line. Some participants of the conference who witnessed the demonstration were [[John von Neumann]], [[John Mauchly]] and [[Norbert Wiener]], who wrote about it in his memoirs.<ref>{{cite web|url=http://stibitz.denison.edu/bio.html |title=George Stibitz : Bio |publisher=Math & Computer Science Department, Denison University |date=30 April 2004 |access-date=5 July 2010 }}</ref><ref>{{cite web|url=http://www.kerryr.net/pioneers/stibitz.htm |title=Pioneers – The people and ideas that made a difference – George Stibitz (1904–1995) |publisher=Kerry Redshaw |date=20 February 2006 |access-date=5 July 2010 }}</ref><ref>{{cite web|url=http://ei.cs.vt.edu/~history/Stibitz.html |title=George Robert Stibitz – Obituary |publisher=Computer History Association of California |date=6 February 1995 |access-date=5 July 2010}}</ref> The [[Z1 (computer)|Z1 computer]], which was designed and built by [[Konrad Zuse]] between 1935 and 1938, used [[Boolean logic]] and binary [[Floating-point arithmetic|floating-point numbers]].<ref name="zuse">{{cite journal |title=Konrad Zuse's Legacy: The Architecture of the Z1 and Z3 |author-last=Rojas |author-first=Raúl |author-link=Raúl Rojas |journal=[[IEEE Annals of the History of Computing]] |volume=19 |number=2 |date=April–June 1997 |pages=5–16 |doi=10.1109/85.586067 |url=http://ed-thelen.org/comp-hist/Zuse_Z1_and_Z3.pdf |access-date=2022-07-03 |url-status=live |archive-url=https://web.archive.org/web/20220703082408/http://ed-thelen.org/comp-hist/Zuse_Z1_and_Z3.pdf |archive-date=2022-07-03}} (12 pages)</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)