Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bloch's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Using operators === In this proof all the symmetries are encoded as commutation properties of the translation operators {{math proof | title = Proof using operators | proof = Source:<ref name=":4">{{Harvnb|Ashcroft|Mermin|1976|p=137}}</ref> We define the translation operator <math display="block">\begin{align} \hat{\mathbf{T}}_{\mathbf{n}}\psi(\mathbf{r})&= \psi(\mathbf{r}+\mathbf{T}_{\mathbf{n}}) \\ &= \psi(\mathbf{r}+n_1\mathbf{a}_1+n_2\mathbf{a}_2+n_3\mathbf{a}_3) \\ &= \psi(\mathbf{r}+\mathbf{A}\mathbf{n}) \end{align}</math> with <math display="block"> \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}, \quad \mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} </math> We use the hypothesis of a mean periodic potential <math display="block">U(\mathbf{x}+\mathbf{T}_{\mathbf{n}})= U(\mathbf{x})</math> and the [[independent electron approximation]] with an Hamiltonian <math display="block">\hat{H}=\frac{\hat{\mathbf{p}}^2}{2m}+U(\mathbf{x})</math> Given the Hamiltonian is invariant for translations it shall commute with the translation operator <math display="block">[\hat{H},\hat{\mathbf{T}}_{\mathbf{n}}] = 0</math> and the two operators shall have a common set of eigenfunctions. Therefore, we start to look at the eigen-functions of the translation operator: <math display="block">\hat{\mathbf{T}}_{\mathbf{n}}\psi(\mathbf{x})=\lambda_{\mathbf{n}}\psi(\mathbf{x})</math> Given <math>\hat{\mathbf{T}}_{\mathbf{n}}</math> is an additive operator <math display="block"> \hat{\mathbf{T}}_{\mathbf{n}_1} \hat{\mathbf{T}}_{\mathbf{n}_2}\psi(\mathbf{x}) = \psi(\mathbf{x} + \mathbf{A} \mathbf{n}_1 + \mathbf{A} \mathbf{n}_2) = \hat{\mathbf{T}}_{\mathbf{n}_1 + \mathbf{n}_2} \psi(\mathbf{x}) </math> If we substitute here the eigenvalue equation and dividing both sides for <math>\psi(\mathbf{x})</math> we have <math display="block"> \lambda_{\mathbf{n}_1} \lambda_{\mathbf{n}_2} = \lambda_{\mathbf{n}_1 + \mathbf{n}_2} </math> This is true for <math display="block">\lambda_{\mathbf{n}} = e^{s \mathbf{n} \cdot \mathbf{a} } </math> where <math>s \in \Complex </math> if we use the normalization condition over a single primitive cell of volume V <math display="block"> 1 = \int_V |\psi(\mathbf{x})|^2 d \mathbf{x} = \int_V \left|\hat\mathbf{T}_\mathbf{n} \psi(\mathbf{x})\right|^2 d \mathbf{x} = |\lambda_{\mathbf{n}}|^2 \int_V |\psi(\mathbf{x})|^2 d \mathbf{x} </math> and therefore <math display="block">1 = |\lambda_{\mathbf{n}}|^2</math> and <math display="block">s = i k </math> where <math>k \in \mathbb{R}</math>. Finally, <math display="block"> \mathbf{\hat{T}_n}\psi(\mathbf{x})= \psi(\mathbf{x} + \mathbf{n} \cdot \mathbf{a} ) = e^{i k \mathbf{n} \cdot \mathbf{a} }\psi(\mathbf{x}) ,</math> which is true for a Bloch wave i.e. for <math>\psi_{\mathbf{k}}(\mathbf{x}) = e^{i \mathbf{k} \cdot \mathbf{x} } u_{\mathbf{k}}(\mathbf{x})</math> with <math>u_{\mathbf{k}}(\mathbf{x}) = u_{\mathbf{k}}(\mathbf{x} + \mathbf{A}\mathbf{n})</math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)