Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Block matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Inversion{{anchor|Inversion}}=== {{for|more details and derivation using block LDU decomposition|Schur complement}} {{see also|Helmert–Wolf blocking}} If a matrix is partitioned into four blocks, it can be [[invertible matrix#Blockwise inversion|inverted blockwise]] as follows: :<math>{P} = \begin{bmatrix} {A} & {B} \\ {C} & {D} \end{bmatrix}^{-1} = \begin{bmatrix} {A}^{-1} + {A}^{-1}{B}\left({D} - {CA}^{-1}{B}\right)^{-1}{CA}^{-1} & -{A}^{-1}{B}\left({D} - {CA}^{-1}{B}\right)^{-1} \\ -\left({D}-{CA}^{-1}{B}\right)^{-1}{CA}^{-1} & \left({D} - {CA}^{-1}{B}\right)^{-1} \end{bmatrix}, </math> where '''A''' and '''D''' are square blocks of arbitrary size, and '''B''' and '''C''' are [[conformable matrix|conformable]] with them for partitioning. Furthermore, '''A''' and the Schur complement of '''A''' in '''P''': {{nowrap|'''P'''/'''A''' {{=}} '''D''' − '''CA'''{{sup|−1}}'''B'''}} must be invertible.<ref> {{cite book | last = Bernstein | first = Dennis | title = Matrix Mathematics | publisher = Princeton University Press | year = 2005 | pages = 44 | isbn = 0-691-11802-7 }}</ref> Equivalently, by permuting the blocks: :<math>{P} = \begin{bmatrix} {A} & {B} \\ {C} & {D} \end{bmatrix}^{-1} = \begin{bmatrix} \left({A} - {BD}^{-1}{C}\right)^{-1} & -\left({A}-{BD}^{-1}{C}\right)^{-1}{BD}^{-1} \\ -{D}^{-1}{C}\left({A} - {BD}^{-1}{C}\right)^{-1} & \quad {D}^{-1} + {D}^{-1}{C}\left({A} - {BD}^{-1}{C}\right)^{-1}{BD}^{-1} \end{bmatrix}. </math><ref name=":0" /> Here, '''D''' and the Schur complement of '''D''' in '''P''': {{nowrap|'''P'''/'''D''' {{=}} '''A''' − '''BD'''{{sup|−1}}'''C'''}} must be invertible. If '''A''' and '''D''' are both invertible, then: : <math> \begin{bmatrix} {A} & {B} \\ {C} & {D} \end{bmatrix}^{-1} = \begin{bmatrix} \left({A} - {B} {D}^{-1} {C}\right)^{-1} & {0} \\ {0} & \left({D} - {C} {A}^{-1} {B}\right)^{-1} \end{bmatrix} \begin{bmatrix} {I} & -{B} {D}^{-1} \\ -{C} {A}^{-1} & {I} \end{bmatrix}. </math> By the [[Weinstein–Aronszajn identity]], one of the two matrices in the block-diagonal matrix is invertible exactly when the other is. ====Computing submatrix inverses from the full inverse==== By the symmetry between a matrix and its inverse in the block inversion formula, if a matrix '''P''' and its inverse '''P'''<sup>−1</sup> are partitioned conformally: :<math>P = \begin{bmatrix} {A} & {B} \\ {C} & {D} \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} {E} & {F} \\ {G} & {H} \end{bmatrix}</math> then the inverse of any principal submatrix can be computed from the corresponding blocks of '''P'''<sup>−1</sup>: :<math>{A}^{-1} = {E} - {FH}^{-1}{G}</math> :<math>{D}^{-1} = {H} - {GE}^{-1}{F}</math> This relationship follows from recognizing that '''E'''<sup>−1</sup> = '''A''' − '''BD'''<sup>−1</sup>'''C''' (the Schur complement), and applying the same block inversion formula with the roles of '''P''' and '''P'''<sup>−1</sup> reversed.<ref>{{cite web|title=Is this formula for a matrix block inverse in terms of the entire matrix inverse known?|url=https://mathoverflow.net/questions/495299/is-this-formula-for-a-matrix-block-inverse-in-terms-of-the-entire-matrix-inverse|website=MathOverflow}}</ref> <ref>{{cite journal|last1=Escalante-B.|first1=Alberto N.|last2=Wiskott|first2=Laurenz|title=Improved graph-based SFA: Information preservation complements the slowness principle|journal=Machine Learning|year=2016|volume=|issue=|pages=|doi=10.1007/s10994-016-5563-y|url=https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462016000200251}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)