Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Catalan number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Hankel matrix == The {{math|''n'' × ''n''}} [[Hankel matrix]] whose {{math|(''i'', ''j'')}} entry is the Catalan number {{math|''C''<sub>''i''+''j''−2</sub>}} has [[determinant]] 1, regardless of the value of {{mvar|n}}. For example, for {{math|1=''n'' = 4}} we have :<math>\det\begin{bmatrix}1 & 1 & 2 & 5 \\ 1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132\end{bmatrix} = 1.</math> Moreover, if the indexing is "shifted" so that the {{math|(''i'', ''j'')}} entry is filled with the Catalan number {{math|''C''<sub>''i''+''j''−1</sub>}} then the determinant is still 1, regardless of the value of {{mvar|n}}. For example, for {{math|1=''n'' = 4}} we have :<math>\det\begin{bmatrix}1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132 \\ 14 & 42 & 132 & 429 \end{bmatrix} = 1.</math> Taken together, these two conditions uniquely define the Catalan numbers. Another feature unique to the Catalan–Hankel matrix is that the {{math|''n'' × ''n''}} submatrix starting at {{math|2}} has determinant {{math|''n'' + 1}}. :<math>\det\begin{bmatrix} 2 \end{bmatrix} = 2</math> :<math>\det\begin{bmatrix} 2 & 5 \\5 & 14 \end{bmatrix} = 3</math> :<math>\det\begin{bmatrix} 2 & 5 & 14\\5 & 14 & 42\\ 14 & 42 & 132\end{bmatrix} = 4</math> :<math>\det\begin{bmatrix} 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132 \\ 14 & 42 & 132 & 42 9\\ 42 & 132 & 429 & 1430\end{bmatrix} = 5</math> et cetera.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)