Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chemical database
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Search == === Substructure === {{Main|Substructure search}} [[File:Lenalidomide substructures.svg|thumb|The drug [[lenalidomide]] contains substructures [[isoindoline]] (red) and [[glutarimide]] (blue)]] Chemists can search databases using parts of structures, parts of their [[IUPAC]] names as well as based on constraints on properties. Chemical databases are different from other general purpose databases in their support for substructure search, a method to retrieve chemicals matching a pattern of atoms and bonds which a user specifies. This kind of search is achieved by looking for [[subgraph isomorphism]] (sometimes also called a [[monomorphism]]) and is a widely studied application of [[graph theory]].<ref name=Currano>{{cite book |doi=10.1039/9781782620655-00109 |chapter=Chapter 5. Searching by Structure and Substructure |title=Chemical Information for Chemists |date=2014 |last1=Currano |first1=Judith N. |pages=109β145 |isbn=978-1-84973-551-3 }}</ref><ref name=Ullmann>{{cite journal |doi=10.1145/321921.321925 |doi-access=free |title=An Algorithm for Subgraph Isomorphism |date=1976 |last1=Ullmann |first1=J. R. |journal=[[Journal of the ACM]] |volume=23 |pages=31β42 }}</ref><ref name=Warr2011>{{cite journal |doi=10.1002/wcms.36 |title=Representation of chemical structures |date=2011 |last1=Warr |first1=Wendy A. |journal=WIREs Computational Molecular Science |volume=1 |issue=4 |pages=557β579 }}</ref> Query structures may contain bonding patterns such as "single/aromatic" or "any" to provide flexibility. Similarly, the vertices which in an actual compound would be a specific atom may be replaced with an atom list in the query. [[Cisβtrans isomerism|''Cis''β''trans'' isomerism]] at [[double bond]]s is catered for by giving a choice of retrieving only the [[EβZ notation|E form]], the [[EβZ notation|Z form]], or both.<ref name=Currano/><ref name=Pubchem>{{cite web |url=https://pubchem.ncbi.nlm.nih.gov/search/help_search.html |title=PubChem Structure Search |website=pubchem.ncbi.nlm.nih.gov |access-date=2024-08-01}}</ref> ===Conformation=== Search by matching 3D conformation of molecules or by specifying spatial constraints is another feature that is particularly of use in [[drug design]]. Searches of this kind can be computationally very expensive. Many approximate methods have been proposed, for instance [[BCUTS]],<ref>{{cite journal|author1=Pearlman, R.S. |author2=Smith, K.M.|title=Metric Validation and the Receptor-Relevant Subspace Concept|journal=J. Chem. Inf. Comput. Sci.|year=1999|volume=39|pages=28β35|doi=10.1021/ci980137x }}</ref><ref name="q243">{{cite web | title=BCUTDescriptor (cdk 2.5 API) | website=CDK - Chemistry Development Kit | date=2021-05-05 | url=https://cdk.github.io/cdk/2.3/docs/api/org/openscience/cdk/qsar/descriptors/molecular/BCUTDescriptor.html | access-date=2024-06-04}}</ref><ref>{{cite journal |last1=Burden |first1=Frank R. |title=Molecular identification number for substructure searches |journal=Journal of Chemical Information and Computer Sciences |date=1 August 1989 |volume=29 |issue=3 |pages=225β227 |doi=10.1021/ci00063a011}}</ref> special function representations, [[moments of inertia]], [[Ray tracing (graphics)|ray-tracing]] histograms, maximum distance histograms, shape [[Fast multipole method|multipoles]] to name a few.<ref>{{cite journal|last1=Pearlman|first1= R.S. |last2=Smith |first2= K.M.|title= Metric Validation and the Receptor-Relevant Subspace Concept|journal= J. Chem. Inf. Comput. Sci.|year= 1999|volume= 39|pages=28β35|doi=10.1021/ci980137x}}</ref><ref>{{cite journal| last1=Lin, Jr.|first1=Hung |last2=Clark |first2= Timothy |year=2005|title= An analytical, variable resolution, complete description of static molecules and their intermolecular binding properties|journal= Journal of Chemical Information and Modeling|volume= 45|issue= 4|pages= 1010β1016|doi=10.1021/ci050059v|pmid=16045295 }}</ref><ref>{{cite journal|last1=Meek |first1=P. J.|last2= Liu|first2= Z.|last3= Tian|first3= L.|last4= Wang |first4=C. J|last5= Welsh |first5=W. J|last6= Zauhar|first6= R. J |year=2006|title= Shape Signatures: speeding up computer aided drug discovery|journal= DDT 2006 |volume=19β20|issue=19β20|pages=895β904|doi=10.1016/j.drudis.2006.08.014|pmid=16997139}}</ref><ref>{{cite journal|last1=Grant|first1= J. A|last2= Gallardo|first2= M. A.|last3= Pickup |first3=B. T. |year=1996|title= A fast method of molecular shape comparison: A simple application of a Gaussian description of molecular shape |journal= Journal of Computational Chemistry|volume=17|issue= 14 |pages= 1653β1666|doi=10.1002/(sici)1096-987x(19961115)17:14<1653::aid-jcc7>3.0.co;2-k|s2cid= 96794688}}</ref><ref>{{cite journal|last1=Ballester|first1= P. J. |first2= W. G. |last2=Richards |year=2007 |title= Ultrafast shape recognition for similarity search in molecular databases|journal= [[Proceedings of the Royal Society A]] |volume= 463|issue= 2081 |pages=1307β1321|doi=10.1098/rspa.2007.1823|bibcode=2007RSPSA.463.1307B|s2cid= 12540483 }}</ref> ===Examples=== Large databases, such as [[PubChem]]<ref name=Pubchem/><ref>{{cite journal |doi=10.1002/cpz1.217 |title=Exploring Chemical Information in PubChem |date=2021 |last1=Kim |first1=Sunghwan |journal=Current Protocols |volume=1 |issue=8 |pages=e217 |pmid=34370395 |pmc=8363119 }}</ref> and [[ChemSpider]],<ref>{{cite book |doi=10.1021/bk-2010-1060.ch002 |chapter=ChemSpider: Integrating Structure-Based Resources Distributed across the Internet |title=Enhancing Learning with Online Resources, Social Networking, and Digital Libraries |series=ACS Symposium Series |date=2010 |last1=Williams |first1=Antony J. |volume=1060 |pages=23β39 |isbn=978-0-8412-2600-5 }}</ref> have [[graphical user interface|graphical interfaces]] for search. The [[Chemical Abstracts Service]] provides tools to search the chemical literature and [[Reaxys]] supplied by [[Elsevier]] covers both chemicals and reaction information, including that originally held in the [[Beilstein database]].<ref>{{cite journal |doi=10.1021/acs.jchemed.9b00966 |title=Property Information in Substance Records in Major Web-Based Chemical Information and Data Retrieval Tools: Understanding Content, Search Opportunities, and Application to Teaching |date=2020 |last1=Jarabak |first1=Charlotte |last2=Mutton |first2=Troy |last3=Ridley |first3=Damon D. |journal=Journal of Chemical Education |volume=97 |issue=5 |pages=1345β1359 |bibcode=2020JChEd..97.1345J }}</ref> [[Patentscope|PATENTSCOPE]] makes chemical patents accessible by substructure<ref>{{Cite web |title=Substructure Search Now Available in PATENTSCOPE |url=https://www.wipo.int/patentscope/en/news/pctdb/2019/news_0001.html |date=2019-02-11 |access-date=2024-08-04 |website=www.wipo.int }}</ref> and Wikipedia's articles describing individual chemicals can also be searched that way.<ref>{{cite journal |doi=10.1186/s13321-015-0061-y |doi-access=free |title=Wikipedia Chemical Structure Explorer: Substructure and similarity searching of molecules from Wikipedia |date=2015 |last1=Ertl |first1=Peter |last2=Patiny |first2=Luc |last3=Sander |first3=Thomas |last4=Rufener |first4=Christian |last5=Zasso |first5=MichaΓ«l |display-authors=3 |journal=Journal of Cheminformatics |volume=7 |page=10 |pmid=25815062 |pmc=4374119 }}</ref> Suppliers of chemicals as synthesis intermediates or for [[high-throughput screening]] routinely provide search interfaces. Currently, the largest database that can be freely searched by the public is the [[ZINC database]], which is claimed to contain over 37 billion commercially available molecules.<ref name=ZINC>{{cite journal |doi=10.1021/acs.jcim.2c01253 |doi-access=free |title=ZINC-22βA Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery |date=2023 |last1=Tingle |first1=Benjamin I. |last2=Tang |first2=Khanh G. |last3=Castanon |first3=Mar |last4=Gutierrez |first4=John J. |last5=Khurelbaatar |first5=Munkhzul |last6=Dandarchuluun |first6=Chinzorig |last7=Moroz |first7=Yurii S. |last8=Irwin |first8=John J. |journal=Journal of Chemical Information and Modeling |volume=63 |issue=4 |pages=1166β1176 |pmid=36790087 |pmc=9976280 }}</ref><ref>{{cite journal |doi=10.1021/acs.jcim.2c00224 |title=Exploration of Ultralarge Compound Collections for Drug Discovery |date=2022 |last1=Warr |first1=Wendy A. |last2=Nicklaus |first2=Marc C. |last3=Nicolaou |first3=Christos A. |last4=Rarey |first4=Matthias |journal=Journal of Chemical Information and Modeling |volume=62 |issue=9 |pages=2021β2034 |pmid=35421301 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)