Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chern class
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Complex projective space === There is an exact sequence of sheaves/bundles:<ref>The sequence is sometimes called the [[Euler sequence]].</ref> <math display="block">0 \to \mathcal{O}_{\mathbb{CP}^n} \to \mathcal{O}_{\mathbb{CP}^n}(1)^{\oplus (n+1)} \to T\mathbb{CP}^n \to 0</math> where <math>\mathcal{O}_{\mathbb{CP}^n} </math> is the structure sheaf (i.e., the trivial line bundle), <math>\mathcal{O}_{\mathbb{CP}^n}(1)</math> is [[Serre's twisting sheaf]] (i.e., the [[hyperplane bundle]]) and the last nonzero term is the [[tangent sheaf]]/bundle. There are two ways to get the above sequence: {{Ordered list |<ref>{{harvnb|Hartshorne|loc=Ch. II. Theorem 8.13.}}</ref> Let <math>z_0, \ldots , z_n</math> be the coordinates of <math>\Complex^{n+1},</math> let <math>\pi\colon \Complex^{n+1} \setminus \{0\} \to \Complex\mathbb{P}^n</math> be the canonical projection, and let <math>U = \mathbb{CP}^n \setminus \{ z_0 = 0\}</math>. Then we have: <math display="block">\pi^* d(z_i / z_0) = {z_0 dz_i - z_i d z_0 \over z_0^2}, \, i \ge 1.</math> In other words, the [[cotangent sheaf]] <math>\Omega_{\Complex\mathbb{P}^n}|_U</math>, which is a free <math>\mathcal{O}_U</math>-module with basis <math>d(z_i / z_0)</math>, fits into the exact sequence <math display="block"> 0 \to \Omega_{\Complex\mathbb{P}^n}|_U \overset{dz_i \mapsto e_i}\to \oplus_1^{n+1} \mathcal{O}(-1)|_U \overset{e_i \mapsto z_i}\to \mathcal{O}_U \to 0, \, i \ge 0,</math> where <math>e_i</math> are the basis of the middle term. The same sequence is clearly then exact on the whole projective space and the dual of it is the aforementioned sequence. |Let ''L'' be a line in <math>\Complex^{n+1}</math> that passes through the origin. It is an exercise in [[elementary geometry]] to see that the complex tangent space to <math>\Complex\mathbb{P}^n</math> at the point ''L'' is naturally the set of linear maps from ''L'' to its complement. Thus, the tangent bundle <math>T\Complex\mathbb{P}^n</math> can be identified with the [[hom bundle]] <math display="block">\operatorname{Hom}(\mathcal{O}(-1), \eta)</math> where Ξ· is the vector bundle such that <math>\mathcal{O}(-1) \oplus \eta = \mathcal{O}^{\oplus (n+1)}</math>. It follows: <math display="block">T\Complex \mathbb{P}^n \oplus \mathcal{O} = \operatorname{Hom}(\mathcal{O}(-1), \eta) \oplus \operatorname{Hom}(\mathcal{O}(-1), \mathcal{O}(-1)) = \mathcal{O}(1)^{\oplus(n+1)}.</math> }} By the additivity of total Chern class <math>c = 1 + c_1 + c_2 + \cdots</math> (i.e., the Whitney sum formula), <math display="block">c(\Complex\mathbb{P}^n) \overset{\mathrm{def}}= c(T\mathbb{CP}^n) = c(\mathcal{O}_{\Complex\mathbb{P}^n}(1))^{n+1} = (1+a)^{n+1},</math> where ''a'' is the canonical generator of the cohomology group <math>H^2(\Complex\mathbb{P}^n, \Z )</math>; i.e., the negative of the first Chern class of the tautological line bundle <math>\mathcal{O}_{\Complex\mathbb{P}^n}(-1)</math> (note: <math>c_1(E^*) = -c_1(E)</math> when <math>E^*</math> is the dual of ''E''.) In particular, for any <math>k\ge 0</math>, <math display="block">c_k(\Complex\mathbb{P}^n) = \binom{n+1}{k} a^k.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)