Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convex conjugate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Infimal convolution === The '''infimal convolution''' (or epi-sum) of two functions <math>f</math> and <math>g</math> is defined as :<math>\left( f \operatorname{\Box} g \right)(x) = \inf \left\{ f(x-y) + g(y) \mid y \in \mathbb{R}^n \right\}.</math> Let <math>f_1, \ldots, f_{m}</math> be [[Proper convex function|proper]], convex and [[Semi-continuity|lower semicontinuous]] functions on <math>\mathbb{R}^{n}.</math> Then the infimal convolution is convex and lower semicontinuous (but not necessarily proper),<ref>{{cite book |last=Phelps |first=Robert |authorlink=Robert R. Phelps |title=Convex Functions, Monotone Operators and Differentiability|url=https://archive.org/details/convexfunctionsm00phel |url-access=limited | edition=2 |year=1993|publisher=Springer |isbn= 0-387-56715-1|page= [https://archive.org/details/convexfunctionsm00phel/page/n50 42]}}</ref> and satisfies :<math>\left( f_1 \operatorname{\Box} \cdots \operatorname{\Box} f_m \right)^{*} = f_1^{*} + \cdots + f_m^{*}.</math> The infimal convolution of two functions has a geometric interpretation: The (strict) [[epigraph (mathematics)|epigraph]] of the infimal convolution of two functions is the [[Minkowski sum]] of the (strict) epigraphs of those functions.<ref>{{cite journal |doi=10.1137/070687542 |title=The Proximal Average: Basic Theory |year=2008 |last1=Bauschke |first1=Heinz H. |last2=Goebel |first2=Rafal |last3=Lucet |first3=Yves |last4=Wang |first4=Xianfu |journal=SIAM Journal on Optimization |volume=19 |issue=2 |pages=766|citeseerx=10.1.1.546.4270 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)