Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariance matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Partial covariance matrix == A covariance matrix with all non-zero elements tells us that all the individual random variables are interrelated. This means that the variables are not only directly correlated, but also correlated via other variables indirectly. Often such indirect, [[common-mode interference|common-mode]] correlations are trivial and uninteresting. They can be suppressed by calculating the partial covariance matrix, that is the part of covariance matrix that shows only the interesting part of correlations. If two vectors of random variables <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> are correlated via another vector <math>\mathbf{I}</math>, the latter correlations are suppressed in a matrix<ref name="KrzMarAnd">W J Krzanowski "Principles of Multivariate Analysis" (Oxford University Press, New York, 1988), Chap. 14.4; K V Mardia, J T Kent and J M Bibby "Multivariate Analysis (Academic Press, London, 1997), Chap. 6.5.3; T W Anderson "An Introduction to Multivariate Statistical Analysis" (Wiley, New York, 2003), 3rd ed., Chaps. 2.5.1 and 4.3.1.</ref> <math display="block"> \operatorname{K}_\mathbf{XY \mid I} = \operatorname{pcov}(\mathbf{X},\mathbf{Y} \mid \mathbf{I}) = \operatorname{cov}(\mathbf{X},\mathbf{Y}) - \operatorname{cov}(\mathbf{X},\mathbf{I}) \operatorname{cov}(\mathbf{I},\mathbf{I})^{-1} \operatorname{cov}(\mathbf{I},\mathbf{Y}). </math> The partial covariance matrix <math>\operatorname{K}_\mathbf{XY \mid I}</math> is effectively the simple covariance matrix <math>\operatorname{K}_\mathbf{XY}</math> as if the uninteresting random variables <math>\mathbf{I}</math> were held constant.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)