Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariant derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Coordinate description== {{Hatnote|This section uses the [[Einstein summation convention]].}} Given coordinate functions <math display="block">x^i,\ i=0,1,2,\dots ,</math> any [[tangent vector]] can be described by its components in the basis <math display="block">\mathbf{e}_i = \frac{\partial}{\partial x^i} .</math> The covariant derivative of a basis vector along a basis vector is again a vector and so can be expressed as a linear combination <math>\Gamma^k \mathbf{e}_k</math>. To specify the covariant derivative it is enough to specify the covariant derivative of each basis vector field <math>\mathbf{e}_i</math> along <math>\mathbf{e}_j</math>. <math display="block"> \nabla_{\mathbf{e}_j} \mathbf{e}_i = {\Gamma^k}_{i j} \mathbf{e}_k,</math> the coefficients <math>\Gamma^k_{i j}</math> are the components of the connection with respect to a system of local coordinates. In the theory of Riemannian and pseudo-Riemannian manifolds, the components of the Levi-Civita connection with respect to a system of local coordinates are called [[Christoffel symbols]]. Then using the rules in the definition, we find that for general vector fields <math>\mathbf{v} = v^j \mathbf{e}_j </math> and <math>\mathbf{u} = u^i \mathbf{e}_i</math> we get <math display="block">\begin{align} \nabla_\mathbf{v} \mathbf{u} &= \nabla_{v^j \mathbf{e}_j} u^i \mathbf{e}_i \\ &= v^j \nabla_{\mathbf{e}_j} u^i \mathbf{e}_i \\ &= v^j u^i \nabla_{\mathbf{e}_j} \mathbf{e}_i + v^j \mathbf{e}_i \nabla_{\mathbf{e}_j} u^i \\ &= v^j u^i {\Gamma^k}_{i j}\mathbf{e}_k + v^j{\partial u^i \over \partial x^j} \mathbf{e}_i \end{align}</math> so <math display="block"> \nabla_\mathbf{v} \mathbf{u} = \left(v^j u^i {\Gamma^k}_{i j} + v^j {\partial u^k\over\partial x^j} \right)\mathbf{e}_k .</math> The first term in this formula is responsible for "twisting" the coordinate system with respect to the covariant derivative and the second for changes of components of the vector field {{mvar|u}}. In particular <math display="block">\nabla_{\mathbf{e}_j} \mathbf{u} = \nabla_j \mathbf{u} = \left( \frac{\partial u^i}{\partial x^j} + u^k {\Gamma^i}_{kj} \right) \mathbf{e}_i </math> In words: the covariant derivative is the usual derivative along the coordinates with correction terms which tell how the coordinates change. For covectors similarly we have <math display="block">\nabla_{\mathbf{e}_j} {\mathbf \theta} = \left( \frac{\partial \theta_i}{\partial x^j} - \theta_k {\Gamma^k}_{ij} \right) {\mathbf e^*}^i </math> where <math>{\mathbf e^*}^i (\mathbf{e}_j) = {\delta^i}_j</math>. The covariant derivative of a type {{math|(''r'', ''s'')}} tensor field along <math>e_c</math> is given by the expression: <math display="block">\begin{align} {(\nabla_{e_c} T)^{a_1 \ldots a_r}}_{b_1 \ldots b_s} = {} &\frac{\partial}{\partial x^c}{T^{a_1 \ldots a_r}}_{b_1 \ldots b_s} \\ &+ \,{\Gamma ^{a_1}}_{dc} {T^{d a_2 \ldots a_r}}_{b_1 \ldots b_s} + \cdots + {\Gamma^{a_r}}_{dc} {T^{a_1 \ldots a_{r-1}d}}_{b_1 \ldots b_s} \\ &-\,{\Gamma^d}_{b_1 c} {T^{a_1 \ldots a_r}}_{d b_2 \ldots b_s} - \cdots - {\Gamma^d}_{b_s c} {T^{a_1 \ldots a_r}}_{b_1 \ldots b_{s-1} d}. \end{align}</math> Or, in words: take the partial derivative of the tensor and add: <math>+{\Gamma^{a_i}}_{dc}</math> for every upper index <math>a_i</math>, and <math>-{\Gamma^d}_{b_ic}</math> for every lower index <math>b_i</math>. If instead of a tensor, one is trying to differentiate a ''[[tensor density]]'' (of weight +1), then one also adds a term <math display="block">-{\Gamma^d}_{d c} {T^{a_1 \ldots a_r}}_{b_1 \ldots b_s}.</math> If it is a tensor density of weight {{mvar|W}}, then multiply that term by {{mvar|W}}. For example, <math display="inline"> \sqrt{-g}</math> is a scalar density (of weight +1), so we get: <math display="block">\left(\sqrt{-g}\right)_{;c} = \left(\sqrt{-g}\right)_{,c} - \sqrt{-g}\,{\Gamma^d}_{d c}</math> where semicolon ";" indicates covariant differentiation and comma "," indicates partial differentiation. Incidentally, this particular expression is equal to zero, because the covariant derivative of a function solely of the metric is always zero.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)