Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covering space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Definitions === ==== Holomorphic maps between Riemann surfaces ==== Let <math>X</math> and <math>Y</math> be [[Riemann surface|Riemann surfaces]], i.e. one dimensional [[Complex manifold|complex manifolds]], and let <math>f: X \rightarrow Y</math> be a continuous map. <math>f</math> is '''holomorphic in a point''' <math>x \in X</math>, if for any [[Chart (mathematics)|charts]] <math>\phi _x:U_1 \rightarrow V_1</math> of <math>x</math> and <math>\phi_{f(x)}:U_2 \rightarrow V_2</math> of <math>f(x)</math>, with <math>\phi_x(U_1) \subset U_2</math>, the map <math>\phi _{f(x)} \circ f \circ \phi^{-1} _x: \mathbb{C} \rightarrow \mathbb{C}</math> is [[Holomorphic function|holomorphic]]. If <math>f</math> is holomorphic at all <math>x \in X</math>, we say <math>f</math> is '''holomorphic.''' The map <math>F =\phi _{f(x)} \circ f \circ \phi^{-1} _x</math> is called the '''local expression''' of <math>f</math> in <math>x \in X</math>. If <math>f: X \rightarrow Y</math> is a non-constant, holomorphic map between [[Compact riemann surface|compact Riemann surfaces]], then <math>f</math> is [[Surjective function|surjective]] and an [[open map]],<ref name="Forster">{{Cite book|last=Forster|first=Otto|title=Lectures on Riemann surfaces|publisher=Springer Berlin|year=1991|isbn=978-3-540-90617-9|location=München}}</ref>{{rp|p=11}} i.e. for every open set <math>U \subset X</math> the [[Image (mathematics)|image]] <math>f(U) \subset Y</math> is also open. ==== Ramification point and branch point ==== Let <math>f: X \rightarrow Y</math> be a non-constant, holomorphic map between compact Riemann surfaces. For every <math>x \in X</math> there exist charts for <math>x</math> and <math>f(x)</math> and there exists a uniquely determined <math>k_x \in \mathbb{N_{>0}}</math>, such that the local expression <math>F</math> of <math>f</math> in <math>x</math> is of the form <math>z \mapsto z^{k_{x}}</math>.{{r|Forster|p=10}} The number <math>k_x</math> is called the '''ramification index''' of <math>f</math> in <math>x</math> and the point <math>x \in X</math> is called a '''ramification point''' if <math>k_x \geq 2</math>. If <math>k_x =1</math> for an <math>x \in X</math>, then <math>x</math> is '''unramified'''. The image point <math>y=f(x) \in Y</math> of a ramification point is called a '''branch point.''' ==== Degree of a holomorphic map ==== Let <math>f: X \rightarrow Y</math> be a non-constant, holomorphic map between compact Riemann surfaces. The '''degree <math>\operatorname{deg}(f)</math>''' of <math>f</math> is the cardinality of the fiber of an unramified point <math>y=f(x) \in Y</math>, i.e. <math>\operatorname{deg}(f):=|f^{-1}(y)|</math>. This number is well-defined, since for every <math>y \in Y</math> the fiber <math>f^{-1}(y)</math> is discrete{{r|Forster|p=20}} and for any two unramified points <math>y_1,y_2 \in Y</math>, it is: <math>|f^{-1}(y_1)|=|f^{-1}(y_2)|.</math> It can be calculated by: : <math>\sum_{x \in f^{-1}(y)} k_x = \operatorname{deg}(f)</math> {{r|Forster|p=29}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)