Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
De Bruijn sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Brute-force attacks on locks=== [[File:De_Bruijn_sequence_10_4.svg|thumb|One possible ''B'' (10, 4) sequence. The 2530 substrings are read from top to bottom then left to right, and their digits are concatenated. To get the string to brute-force a combination lock, the last three digits in brackets (000) are appended. The 10003-digit string is hence "0 0001 0002 0003 0004 0005 0006 0007 0008 0009 0011 ... 79 7988 7989 7998 7999 8 8889 8899 89 8999 9 000" (spaces added for readability).]] {| class="infobox wikitable collapsible collapsed" style="text-align:center;font-size:80%;line-height:0.5;" |- style="text-align:left;font-size:125%;line-height:1;" |colspan="10"|B{10,3} with digits read from top to bottom<br />then left to right;<ref>{{Cite web|url=http://hakank.org/comb/debruijn.cgi?k=10&n=3|title = de Bruijn (DeBruijn) sequence (K=10, n=3)}}</ref> appending "00" yields<br />a string to brute-force a 3-digit combination lock |- style="vertical-align:top;" |0 |rowspan="12"|1 |rowspan="23"|2 |rowspan="34"|3 |rowspan="45"|4 |rowspan="56"|5 |rowspan="67"|6 |rowspan="78"|7 |rowspan="89"|8 |rowspan="99"|9 |- |001 |- |002 |- |003 |- |004 |- |005 |- |006 |- |007 |- |008 |- |009 |- | |- |011 |- |012||112 |- |013||113 |- |014||114 |- |015||115 |- |016||116 |- |017||117 |- |018||118 |- |019||119 |- | |- |021 |- |022||122 |- |023||123||223 |- |024||124||224 |- |025||125||225 |- |026||126||226 |- |027||127||227 |- |028||128||228 |- |029||129||229 |- | ||rowspan="2"| |- |031 |- |032||132 |- |033||133||233 |- |034||134||234||334 |- |035||135||235||335 |- |036||136||236||336 |- |037||137||237||337 |- |038||138||238||338 |- |039||139||239||339 |- | ||rowspan="2"| ||rowspan="3"| |- |041 |- |042||142 |- |043||143||243 |- |044||144||244||344 |- |045||145||245||345||445 |- |046||146||246||346||446 |- |047||147||247||347||447 |- |048||148||248||348||448 |- |049||149||249||349||449 |- | ||rowspan="2"| ||rowspan="3"| ||rowspan="4"| |- |051 |- |052||152 |- |053||153||253 |- |054||154||254||354 |- |055||155||255||355||455 |- |056||156||256||356||456||556 |- |057||157||257||357||457||557 |- |058||158||258||358||458||558 |- |059||159||259||359||459||559 |- | ||rowspan="2"| ||rowspan="3"| ||rowspan="4"| ||rowspan="5"| |- |061 |- |062||162 |- |063||163||263 |- |064||164||264||364 |- |065||165||265||365||465 |- |066||166||266||366||466||566 |- |067||167||267||367||467||567||667 |- |068||168||268||368||468||568||668 |- |069||169||269||369||469||569||669 |- | ||rowspan="2"| ||rowspan="3"| ||rowspan="4"| ||rowspan="5"| ||rowspan="6"| |- |071 |- |072||172 |- |073||173||273 |- |074||174||274||374 |- |075||175||275||375||475 |- |076||176||276||376||476||576 |- |077||177||277||377||477||577||677 |- |078||178||278||378||478||578||678||778 |- |079||179||279||379||479||579||679||779 |- | ||rowspan="2"| ||rowspan="3"| ||rowspan="4"| ||rowspan="5"| ||rowspan="6"| ||rowspan="7"| |- |081 |- |082||182 |- |083||183||283 |- |084||184||284||384 |- |085||185||285||385||485 |- |086||186||286||386||486||586 |- |087||187||287||387||487||587||687 |- |088||188||288||388||488||588||688||788 |- |089||189||289||389||489||589||689||789||889 |- | ||rowspan="2"| ||rowspan="3"| ||rowspan="4"| ||rowspan="5"| ||rowspan="6"| ||rowspan="7"| ||rowspan="8"| |- |091 |- |092||192 |- |093||193||293 |- |094||194||294||394 |- |095||195||295||395||495 |- |096||196||296||396||496||596 |- |097||197||297||397||497||597||697 |- |098||198||298||398||498||598||698||798 |- |099||199||299||399||499||599||699||799||899||(00) |} A de Bruijn sequence can be used to shorten a brute-force attack on a [[Personal Identification Number|PIN]]-like code lock that does not have an "enter" key and accepts the last ''n'' digits entered. For example, a [[digital door lock]] with a 4-digit code (each digit having 10 possibilities, from 0 to 9) would have ''B'' (10, 4) solutions, with length {{val|10000}}. Therefore, only at most {{nowrap|{{val|10000}} + 3 {{=}} {{val|10003}}}} (as the solutions are cyclic) presses are needed to open the lock, whereas trying all codes separately would require {{nowrap|4 Γ {{val|10000}} {{=}} {{val|40000}}}} presses. {{Anoto_paper_principle.svg}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)