Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac delta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Translation=== The integral of any function multiplied by the time-delayed Dirac delta <math> \delta_T(t) {=} \delta(t{-}T)</math> is <math display="block">\int_{-\infty}^\infty f(t) \,\delta(t-T)\,dt = f(T).</math> This is sometimes referred to as the ''sifting property''<ref>{{MathWorld|urlname=SiftingProperty|title=Sifting Property}}</ref> or the ''sampling property''.<ref>{{Cite book|last=Karris|first=Steven T.|url={{google books |plainurl=y |id=f0RdM1zv_dkC}}| title=Signals and Systems with MATLAB Applications|date=2003|publisher=Orchard Publications|isbn=978-0-9709511-6-8|language=en| page=[{{google books |plainurl=y |id=f0RdM1zv_dkC&pg=SA1-PA15 }} 15]}}</ref> The delta function is said to "sift out" the value of ''f(t)'' at ''t'' = ''T''.<ref>{{Cite book|last=Roden|first=Martin S.|url={{google books |plainurl=y |id=YEKeBQAAQBAJ}}|title=Introduction to Communication Theory|date=2014-05-17|publisher=Elsevier|isbn=978-1-4831-4556-3|language=en|page=[{{google books |plainurl=y |id=YEKeBQAAQBAJ|page=40}}]}}</ref> It follows that the effect of [[Convolution|convolving]] a function {{math|''f''(''t'')}} with the time-delayed Dirac delta is to time-delay {{math|''f''(''t'')}} by the same amount:<ref>{{Cite book|last1=Rottwitt|first1=Karsten|url={{google books |plainurl=y |id=G1jSBQAAQBAJ}}|title=Nonlinear Optics: Principles and Applications|last2=Tidemand-Lichtenberg|first2=Peter| date=2014-12-11| publisher=CRC Press|isbn=978-1-4665-6583-8|language=en|page=[{{google books |plainurl=y |id=G1jSBQAAQBAJ|page=276}}] 276}}</ref> <math display="block">\begin{align} (f * \delta_T)(t) \ &\stackrel{\mathrm{def}}{=}\ \int_{-\infty}^\infty f(\tau)\, \delta(t-T-\tau) \, d\tau \\ &= \int_{-\infty}^\infty f(\tau) \,\delta(\tau-(t-T)) \,d\tau \qquad \text{since}~ \delta(-x) = \delta(x) ~~ \text{by (4)}\\ &= f(t-T). \end{align}</math> The sifting property holds under the precise condition that {{mvar|f}} be a [[Distribution (mathematics)#Tempered distributions and Fourier transform|tempered distribution]] (see the discussion of the Fourier transform [[#Fourier transform|below]]). As a special case, for instance, we have the identity (understood in the distribution sense) <math display="block">\int_{-\infty}^\infty \delta (\xi-x) \delta(x-\eta) \,dx = \delta(\eta-\xi).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)