Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Directed acyclic graph
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Transitive closure and transitive reduction === The transitive closure of a given DAG, with {{mvar|n}} vertices and {{mvar|m}} edges, may be constructed in time {{math|''O''(''mn'')}} by using either [[breadth-first search]] or [[depth-first search]] to test reachability from each vertex.<ref>{{harvtxt|Skiena|2009}}, p. 495.</ref> Alternatively, it can be solved in time {{math|''O''(''n''<sup>''Ο''</sup>)}} where {{math|''Ο'' < 2.373}} is the [[Computational complexity of matrix multiplication#Matrix multiplication exponent|exponent for matrix multiplication algorithms]]; this is a theoretical improvement over the {{math|''O''(''mn'')}} bound for [[dense graph]]s.<ref>{{harvtxt|Skiena|2009}}, p. 496.</ref> In all of these transitive closure algorithms, it is possible to distinguish pairs of vertices that are reachable by at least one path of length two or more from pairs that can only be connected by a length-one path. The transitive reduction consists of the edges that form length-one paths that are the only paths connecting their endpoints. Therefore, the transitive reduction can be constructed in the same asymptotic time bounds as the transitive closure.<ref>{{harvtxt|Bang-Jensen|Gutin|2008}}, p. 38.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)