Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic-curve cryptography
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Projective coordinates === A close examination of the addition rules shows that in order to add two points, one needs not only several additions and multiplications in <math>\mathbb{F}_q</math> but also an [[Modular multiplicative inverse|inversion]] operation. The [[Modular multiplicative inverse|inversion]] (for given <math>x \in \mathbb{F}_q</math> find <math>y \in \mathbb{F}_q</math> such that <math>x y = 1</math>) is one to two orders of magnitude slower<ref>{{cite journal|first1=Y. |last1=Hitchcock |first2=E. |last2=Dawson |first3=A. |last3=Clark |first4=P. |last4=Montague |url=http://anziamj.austms.org.au/V44/CTAC2001/Hitc/Hitc.pdf |title=Implementing an efficient elliptic curve cryptosystem over GF(p) on a smart card |year=2002 |journal=ANZIAM Journal |volume=44 |url-status=dead |archive-url=https://web.archive.org/web/20060327202009/http://anziamj.austms.org.au/V44/CTAC2001/Hitc/Hitc.pdf |archive-date=2006-03-27 }}</ref> than multiplication. However, points on a curve can be represented in different coordinate systems which do not require an [[Modular multiplicative inverse|inversion]] operation to add two points. Several such systems were proposed: in the ''projective'' system each point is represented by three coordinates <math>(X,Y,Z)</math> using the following relation: <math>x = \frac{X}{Z}</math>, <math>y = \frac{Y}{Z}</math>; in the ''Jacobian system'' a point is also represented with three coordinates <math>(X,Y,Z)</math>, but a different relation is used: <math>x = \frac{X}{Z^2}</math>, <math>y = \frac{Y}{Z^3}</math>; in the ''López–Dahab system'' the relation is <math>x = \frac{X}{Z}</math>, <math>y = \frac{Y}{Z^2}</math>; in the ''modified Jacobian'' system the same relations are used but four coordinates are stored and used for calculations <math>(X,Y,Z,aZ^4)</math>; and in the ''Chudnovsky Jacobian'' system five coordinates are used <math>(X,Y,Z,Z^2,Z^3)</math>. Note that there may be different naming conventions, for example, [[IEEE P1363]]-2000 standard uses "projective coordinates" to refer to what is commonly called Jacobian coordinates.<!--TBD: insert formulas--> An additional speed-up is possible if mixed coordinates are used.<ref>{{Cite book |first1=H. |last1=Cohen |author1-link=Henri Cohen (number theorist)|first2=A. |last2=Miyaji |author2-link=Atsuko Miyaji|first3=T. |last3=Ono |title=Advances in Cryptology — ASIACRYPT'98 |chapter=Efficient Elliptic Curve Exponentiation Using Mixed Coordinates |year=1998 |series=Lecture Notes in Computer Science |volume=1514 |pages=51–65 |doi=10.1007/3-540-49649-1_6 |isbn=978-3-540-65109-3 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)