Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Inverting the period ratio=== Here, we use the complete elliptic integral of the first kind with the ''parameter'' <math>m</math> instead, because the squaring function introduces problems when inverting in the complex plane. So let :<math>K[m]=\int_0^{\pi/2}\dfrac{d\theta}{\sqrt{1-m\sin^2\theta}}</math> and let :<math>\theta_2(\tau)=2e^{\pi i\tau/4}\sum_{n=0}^\infty q^{n(n+1)},\quad q=e^{\pi i\tau},\, \operatorname{Im}\tau >0,</math> :<math>\theta_3(\tau)=1+2\sum_{n=1}^\infty q^{n^2},\quad q=e^{\pi i\tau},\,\operatorname{Im}\tau >0</math> be the [[theta function]]s. The equation :<math>\tau=i\frac{K[1-m]}{K[m]}</math> can then be solved (provided that a solution <math>m</math> exists) by :<math>m=\frac{\theta_2(\tau)^4}{\theta_3(\tau)^4}</math> which is in fact the [[modular lambda function]]. For the purposes of computation, the error analysis is given by<ref>{{cite web |url=https://fungrim.org/topic/Approximations_of_Jacobi_theta_functions/ |title=Approximations of Jacobi theta functions |last= |first= |date= |website=The Mathematical Functions Grimoire |publisher=Fredrik Johansson |access-date=August 29, 2024}}</ref> :<math>\left|{e}^{-\pi i \tau / 4} \theta_{2}\!\left(\tau\right) - 2\sum_{n=0}^{N - 1} {q}^{n \left(n + 1\right)}\right| \le \begin{cases} \frac{2 {\left|q\right|}^{N \left(N + 1\right)}}{1 - \left|q\right|^{2N+1}}, & \left|q\right|^{2N+1} < 1\\\infty, & \text{otherwise}\\ \end{cases}\;</math> :<math>\left|\theta_{3}\!\left(\tau\right) - \left(1+2\sum_{n=1}^{N - 1} {q}^{n^2}\right)\right| \le \begin{cases} \frac{2 {\left|q\right|}^{N^2}}{1 - \left|q\right|^{2N+1}}, & \left|q\right|^{2N+1} < 1\\\infty, & \text{otherwise}\\ \end{cases}\;</math> where <math>N\in\mathbb{Z}_{\ge 1}</math> and <math>\operatorname{Im}\tau >0</math>. Also :<math>K[m]=\frac{\pi}{2}\theta_3(\tau )^2,\quad \tau=i\frac{K[1-m]}{K[m]}</math> where <math>m\in\mathbb{C}\setminus\{0,1\}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)