Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic orbit
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Using XY Coordinates==== This can be done in cartesian coordinates using the following procedure: The general equation of an ellipse under the assumptions above is: :<math> \sqrt{ \left(f_x - x\right)^2 + \left(f_y - y\right)^2} + \sqrt{ x^2 + y^2 } = 2a \qquad\mid z=0</math> Given: :<math>r_x, r_y \quad</math> the initial position coordinates :<math>v_x, v_y \quad</math> the initial velocity coordinates and :<math>\mu = Gm_1 \quad</math> the gravitational parameter Then: :<math>h = r_x v_y - r_y v_x \quad</math> specific angular momentum :<math>r = \sqrt{r_x^2 + r_y^2} \quad</math> initial distance from F1 (at the origin) :<math>a = \frac{\mu r}{2\mu - r \left(v_x^2 + v_y^2 \right)} \quad</math> the semi-major axis length :<math>e_x = \frac{r_x}{r} - \frac{h v_y}{\mu} \quad</math> the [[Eccentricity vector]] coordinates :<math>e_y = \frac{r_y}{r} + \frac{h v_x}{\mu} \quad</math> Finally, the empty focus coordinates :<math>f_x = - 2 a e_x \quad</math> :<math>f_y = - 2 a e_y \quad</math> Now the result values ''fx, fy'' and ''a'' can be applied to the general ellipse equation above.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)