Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exact differential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Some useful equations derived from exact differentials in two dimensions == (See also [[Bridgman's thermodynamic equations]] for the use of exact differentials in the theory of [[thermodynamic equations]]) Suppose we have five state functions <math>z,x,y,u</math>, and <math>v</math>. Suppose that the state space is two-dimensional and any of the five quantities are differentiable. Then by the [[chain rule]] {{NumBlk|:|<math> dz = \left(\frac{\partial z}{\partial x}\right)_y dx+ \left(\frac{\partial z}{\partial y}\right)_x dy = \left(\frac{\partial z}{\partial u}\right)_v du +\left(\frac{\partial z}{\partial v}\right)_u dv </math>|{{EquationRef|1}}}} but also by the chain rule: {{NumBlk|:|<math> dx = \left(\frac{\partial x}{\partial u}\right)_v du +\left(\frac{\partial x}{\partial v}\right)_u dv </math>|{{EquationRef|2}}}} and {{NumBlk|:|<math> dy= \left(\frac{\partial y}{\partial u}\right)_v du +\left(\frac{\partial y}{\partial v}\right)_u dv </math>|{{EquationRef|3}}}} so that (by substituting (2) and (3) into (1)): {{NumBlk|:|<math> \begin{align} dz = & \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v \right] du \\ + & \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial v}\right)_u + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial v}\right)_u \right] dv \end{align} </math>|{{EquationRef|4}}}} which implies that (by comparing (4) with (1)): {{NumBlk|:|<math> \left(\frac{\partial z}{\partial u}\right)_v = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v </math>|{{EquationRef|5}}}} Letting <math>v=y</math> in (5) gives: {{NumBlk|:|<math> \left(\frac{\partial z}{\partial u}\right)_y = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_y </math>|{{EquationRef|6}}}} Letting <math>u=y</math> in (5) gives: {{NumBlk|:|<math> \left(\frac{\partial z}{\partial y}\right)_v = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x </math>|{{EquationRef|7}}}} Letting <math>u=y</math> and <math>v=z</math> in (7) gives: {{NumBlk|:|<math> \left(\frac{\partial z}{\partial y}\right)_x = - \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z </math>|{{EquationRef|8}}}} using (<math>\partial a/\partial b)_c = 1/(\partial b/\partial a)_c</math> gives the [[triple product rule]]: {{NumBlk|:|<math> \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x =-1 </math>|{{EquationRef|9}}}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)