Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Decomposition of powers === Since the golden ratio satisfies the equation <math display=block>\varphi^2 = \varphi + 1,</math> this expression can be used to decompose higher powers <math>\varphi^n</math> as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of <math>\varphi</math> and 1. The resulting [[recurrence relation]]ships yield Fibonacci numbers as the linear [[coefficient]]s: <math display=block>\varphi^n = F_n\varphi + F_{n-1}.</math> This equation can be [[Mathematical proof|proved]] by [[Mathematical induction|induction]] on {{math|''n'' β₯ 1}}: <math display=block>\begin{align} \varphi^{n+1} &= (F_n\varphi + F_{n-1})\varphi = F_n\varphi^2 + F_{n-1}\varphi \\ &= F_n(\varphi+1) + F_{n-1}\varphi = (F_n + F_{n-1})\varphi + F_n = F_{n+1}\varphi + F_n. \end{align}</math> For <math>\psi = -1/\varphi</math>, it is also the case that <math>\psi^2 = \psi + 1</math> and it is also the case that <math display=block>\psi^n = F_n\psi + F_{n-1}.</math> These expressions are also true for {{math|''n'' < 1}} if the Fibonacci sequence ''F<sub>n</sub>'' is [[Generalizations of Fibonacci numbers#Extension to negative integers|extended to negative integers]] using the Fibonacci rule <math>F_n = F_{n+2} - F_{n+1}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)