Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Four-vector
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Standard basis, (+βββ) signature===== The (+βββ) [[metric signature]] is sometimes called the "mostly minus" convention, or the "west coast" convention. In the (+βββ) [[metric signature]], evaluating the [[Einstein notation|summation over indices]] gives: <math display="block">\mathbf{A} \cdot \mathbf{B} = A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3 </math> while in matrix form: <math display="block">\mathbf{A \cdot B} = \begin{pmatrix} A^0 & A^1 & A^2 & A^3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} B^0 \\ B^1 \\ B^2 \\ B^3 \end{pmatrix} </math> It is a recurring theme in special relativity to take the expression <math display="block"> \mathbf{A}\cdot\mathbf{B} = A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3 = C</math> in one [[Frame of reference|reference frame]], where ''C'' is the value of the inner product in this frame, and: <math display="block"> \mathbf{A}'\cdot\mathbf{B}' = {A'}^0 {B'}^0 - {A'}^1 {B'}^1 - {A'}^2 {B'}^2 - {A'}^3 {B'}^3 = C' </math> in another frame, in which ''C''′ is the value of the inner product in this frame. Then since the inner product is an invariant, these must be equal: <math display="block"> \mathbf{A}\cdot\mathbf{B} = \mathbf{A}'\cdot\mathbf{B}' </math> that is: <math display="block"> \begin{align} C &= A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3 \\[2pt] &= {A'}^0 {B'}^0 - {A'}^1 {B'}^1 - {A'}^2 {B'}^2 - {A'}^3{B'}^3 \end{align} </math> Considering that physical quantities in relativity are four-vectors, this equation has the appearance of a "[[Conservation law (physics)|conservation law]]", but there is no "conservation" involved. The primary significance of the Minkowski inner product is that for any two four-vectors, its value is [[invariant (physics)|invariant]] for all observers; a change of coordinates does not result in a change in value of the inner product. The components of the four-vectors change from one frame to another; '''A''' and '''A'''′ are connected by a [[Lorentz transformation]], and similarly for '''B''' and '''B'''′, although the inner products are the same in all frames. Nevertheless, this type of expression is exploited in relativistic calculations on a par with conservation laws, since the magnitudes of components can be determined without explicitly performing any Lorentz transformations. A particular example is with energy and momentum in the [[energy-momentum relation]] derived from the [[four-momentum]] vector (see also below). In this signature we have: <math display="block"> \mathbf{A \cdot A} = \left(A^0\right)^2 - \left(A^1\right)^2 - \left(A^2\right)^2 - \left(A^3\right)^2 </math> With the signature (+βββ), four-vectors may be classified as either [[Minkowski space#Causal structure|spacelike]] if <math>\mathbf{A \cdot A} < 0</math>, [[Minkowski space#Causal structure|timelike]] if <math>\mathbf{A \cdot A} > 0</math>, and [[Minkowski space#Causal structure|null vector]]s if <math>\mathbf{A \cdot A} = 0</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)