Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Stirling's formula === {{Main|Stirling's approximation}} [[File:Gamma cplot.svg|thumb|Representation of the gamma function in the complex plane. Each point <math>z</math> is colored according to the argument of {{nowrap|<math>\Gamma(z)</math>.}} The contour plot of the modulus <math>|\Gamma(z)|</math> is also displayed.]] [[File:Gamma abs 3D.png|thumb|3-dimensional plot of the absolute value of the complex gamma function]] The behavior of <math>\Gamma(x)</math> for an increasing positive real variable is given by [[Stirling's formula]] <math display="block">\Gamma(x+1)\sim\sqrt{2\pi x}\left(\frac{x}{e}\right)^x,</math> where the symbol <math>\sim</math> means asymptotic convergence: the ratio of the two sides converges to 1 in the limit {{nowrap|<math display="inline">x \to + \infty</math>.<ref name="Davis"/>}} This growth is faster than exponential, <math>\exp(\beta x)</math>, for any fixed value of <math>\beta</math>. Another useful limit for asymptotic approximations for <math>x \to + \infty</math> is: <math display="block"> {\Gamma(x+\alpha)}\sim{\Gamma(x)x^\alpha}, \qquad \alpha \in \Complex. </math> When writing the error term as an infinite product, Stirling's formula can be used to define the gamma function: <ref>{{cite book |last1=Artin |first1=Emil |title=The Gamma Function |date=2015 |page = 24|publisher=Dover }}</ref> <math display="block"> \Gamma(x) = \sqrt{\frac{2\pi}{x}} \left(\frac{x}{e}\right)^x \prod_{n=0}^{\infty} \left[\frac{1}{e}\left(1+\frac{1}{x+n}\right)^{x+n+\frac{1}{2}} \right]</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)