Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian binomial coefficient
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==q identities== ===Analogs of Pascal's identity=== The analogs of [[Pascal's identity]] for the Gaussian binomial coefficients are:<ref>Mukhin, Eugene, chapter 3</ref> :<math>{m \choose r}_q = q^r {m-1 \choose r}_q + {m-1 \choose r-1}_q</math> and :<math>{m \choose r}_q = {m-1 \choose r}_q + q^{m-r}{m-1 \choose r-1}_q.</math> When <math>q=1</math>, these both give the usual binomial identity. We can see that as <math>m\to\infty</math>, both equations remain valid. The first Pascal analog allows computation of the Gaussian binomial coefficients recursively (with respect to ''m'' ) using the initial values :<math>{m \choose m}_q ={m \choose 0}_q=1 </math> and also shows that the Gaussian binomial coefficients are indeed polynomials (in ''q''). The second Pascal analog follows from the first using the substitution <math> r \rightarrow m-r </math> and the invariance of the Gaussian binomial coefficients under the reflection <math> r \rightarrow m-r </math>. These identities have natural interpretations in terms of linear algebra. Recall that <math>\tbinom{m}{r}_q</math> counts ''r''-dimensional subspaces <math>V\subset \mathbb{F}_q^m</math>, and let <math>\pi:\mathbb{F}_q^m \to \mathbb{F}_q^{m-1} </math> be a projection with one-dimensional nullspace <math>E_1 </math>. The first identity comes from the bijection which takes <math>V\subset \mathbb{F}_q^m </math> to the subspace <math>V' = \pi(V)\subset \mathbb{F}_q^{m-1}</math>; in case <math>E_1\not\subset V</math>, the space <math>V'</math> is ''r''-dimensional, and we must also keep track of the linear function <math>\phi:V'\to E_1</math> whose graph is <math>V</math>; but in case <math>E_1\subset V</math>, the space <math>V'</math> is (''r''β1)-dimensional, and we can reconstruct <math>V=\pi^{-1}(V')</math> without any extra information. The second identity has a similar interpretation, taking <math>V</math> to <math>V' = V\cap E_{n-1}</math> for an (''m''β1)-dimensional space <math>E_{m-1}</math>, again splitting into two cases. ===Proofs of the analogs=== Both analogs can be proved by first noting that from the definition of <math>\tbinom{m}{r}_q</math>, we have: {{NumBlk|:|<math>\binom{m}{r}_q = \frac{1-q^m}{1-q^{m-r}} \binom{m-1}{r}_q</math>|{{EquationRef|1}}}} {{NumBlk|:|<math>\binom{m}{r}_q = \frac{1-q^m}{1-q^r} \binom{m-1}{r-1}_q</math>|{{EquationRef|2}}}} {{NumBlk|:|<math>\frac{1-q^r}{1-q^{m-r}}\binom{m-1}{r}_q = \binom{m-1}{r-1}_q</math>|{{EquationRef|3}}}} As :<math>\frac{1-q^m}{1-q^{m-r}}=\frac{1-q^r+q^r-q^m}{1-q^{m-r}}=q^r+\frac{1-q^r}{1-q^{m-r}}</math> Equation ({{EquationNote|1}}) becomes: :<math>\binom{m}{r}_q = q^r\binom{m-1}{r}_q + \frac{1-q^r}{1-q^{m-r}}\binom{m-1}{r}_q</math> and substituting equation ({{EquationNote|3}}) gives the first analog. A similar process, using :<math>\frac{1-q^m}{1-q^r}=q^{m-r}+\frac{1-q^{m-r}}{1-q^r}</math> instead, gives the second analog. ===''q''-binomial theorem=== There is an analog of the [[binomial theorem]] for ''q''-binomial coefficients, known as the Cauchy binomial theorem: :<math>\prod_{k=0}^{n-1} (1+q^kt)=\sum_{k=0}^n q^{k(k-1)/2} {n \choose k}_q t^k .</math> Like the usual binomial theorem, this formula has numerous generalizations and extensions; one such, corresponding to Newton's generalized binomial theorem for negative powers, is :<math>\prod_{k=0}^{n-1} \frac{1}{1-q^kt}=\sum_{k=0}^\infty {n+k-1 \choose k}_q t^k. </math> In the limit <math>n\rightarrow\infty</math>, these formulas yield :<math>\prod_{k=0}^{\infty} (1+q^kt)=\sum_{k=0}^\infty \frac{q^{k(k-1)/2}t^k}{[k]_q!\,(1-q)^k}</math> and :<math>\prod_{k=0}^\infty \frac{1}{1-q^kt}=\sum_{k=0}^\infty \frac{t^k}{[k]_q!\,(1-q)^k}</math>. Setting <math>t=q</math> gives the generating functions for distinct and any parts respectively. (See also [[Basic hypergeometric series]].) ===Central ''q''-binomial identity=== With the ordinary binomial coefficients, we have: :<math>\sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n}</math> With ''q''-binomial coefficients, the analog is: :<math>\sum_{k=0}^n q^{k^2}\binom{n}{k}_q^2 = \binom{2n}{n}_q</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)