Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===''n''-dimensional and functional generalization=== {{main|multivariate normal distribution}} Suppose ''A'' is a symmetric positive-definite (hence invertible) {{math|''n'' Γ ''n''}} [[precision matrix]], which is the matrix inverse of the [[covariance matrix]]. Then, <math display="block">\begin{align} \int_{\mathbb{R}^n} \exp{\left(-\frac 1 2 \mathbf{x}^\mathsf{T} A \mathbf{x} \right)} \, d^n \mathbf{x} &= \int_{\mathbb{R}^n} \exp{\left(-\frac 1 2 \sum\limits_{i,j=1}^{n} A_{ij} x_i x_j \right)} \, d^n \mathbf{x} \\[1ex] &= \sqrt{\frac{{\left(2\pi\right)}^n}{\det A}} = \sqrt{\frac{1}{\det \left(A / 2\pi\right)}} \\[1ex] &= \sqrt{\det \left(2 \pi A^{-1}\right)} \end{align}</math>By completing the square, this generalizes to<math display="block">\int_{\mathbb{R}^n} \exp{\left(-\tfrac 1 2 \mathbf{x}^\mathsf{T} A \mathbf{x} + \mathbf{b}^\mathsf{T} \mathbf{x} + c\right)} \, d^n \mathbf{x} = \sqrt{\det \left(2 \pi A^{-1}\right)} \exp\left(\tfrac{1}{2} \mathbf{b}^\mathsf{T} A^{-1} \mathbf{b} + c\right)</math> This fact is applied in the study of the [[multivariate normal distribution]]. Also, <math display="block">\int x_{k_1}\cdots x_{k_{2N}} \, \exp{\left( -\frac{1}{2} \sum\limits_{i,j=1}^{n}A_{ij} x_i x_j \right)} \, d^nx =\sqrt{\frac{(2\pi)^n}{\det A}} \, \frac{1}{2^N N!} \, \sum_{\sigma \in S_{2N}}(A^{-1})_{k_{\sigma(1)}k_{\sigma(2)}} \cdots (A^{-1})_{k_{\sigma(2N-1)}k_{\sigma(2N)}}</math> where ''Ο'' is a [[permutation]] of {{math|{1, β¦, 2''N''}<nowiki/>}} and the extra factor on the right-hand side is the sum over all combinatorial pairings of {{math|{1, β¦, 2''N''}<nowiki/>}} of ''N'' copies of ''A''<sup>β1</sup>. Alternatively,<ref name="Central identity explanation">{{cite web |title=Reference for Multidimensional Gaussian Integral |date=March 30, 2012 |work=[[Stack Exchange]] |url=https://math.stackexchange.com/q/126227 }}</ref> <math display="block">\int f(\mathbf x) \exp{\left( - \frac 1 2 \sum_{i,j=1}^n A_{ij} x_i x_j \right)} d^n\mathbf{x} = \sqrt{\frac{{\left(2\pi\right)}^n}{\det A}} \, \left. \exp\left(\frac{1}{2} \sum_{i,j=1}^{n}\left(A^{-1}\right)_{ij}{\partial \over \partial x_i}{\partial \over \partial x_j}\right) f(\mathbf{x})\right|_{\mathbf{x}=0}</math> for some [[analytic function]] ''f'', provided it satisfies some appropriate bounds on its growth and some other technical criteria. (It works for some functions and fails for others. Polynomials are fine.) The exponential over a differential operator is understood as a [[power series]]. While [[functional integral]]s have no rigorous definition (or even a nonrigorous computational one in most cases), we can ''define'' a Gaussian functional integral in analogy to the finite-dimensional case. {{Citation needed|date=June 2011}} There is still the problem, though, that <math>(2\pi)^\infty</math> is infinite and also, the [[functional determinant]] would also be infinite in general. This can be taken care of if we only consider ratios: <math display="block">\begin{align} & \frac{\displaystyle\int f(x_1)\cdots f(x_{2N}) \exp\left[{-\iint \frac{1}{2}A(x_{2N+1},x_{2N+2}) f(x_{2N+1}) f(x_{2N+2}) \, d^dx_{2N+1} \, d^dx_{2N+2}}\right] \mathcal{D}f}{\displaystyle\int \exp\left[{-\iint \frac{1}{2} A(x_{2N+1}, x_{2N+2}) f(x_{2N+1}) f(x_{2N+2}) \, d^dx_{2N+1} \, d^dx_{2N+2}}\right] \mathcal{D}f} \\[6pt] = {} & \frac{1}{2^N N!}\sum_{\sigma \in S_{2N}}A^{-1}(x_{\sigma(1)},x_{\sigma(2)})\cdots A^{-1}(x_{\sigma(2N-1)},x_{\sigma(2N)}). \end{align}</math> In the [[DeWitt notation]], the equation looks identical to the finite-dimensional case.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)