Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==RKHS structure and Gaussian process== Let <math>f</math> be a mean-zero Gaussian process <math>\left\{X_t ; t\in T\right\}</math> with a non-negative definite covariance function <math>K</math> and let <math> R</math> be a symmetric and positive semidefinite function. Then, there exists a Gaussian process <math> X</math> which has the covariance <math> R</math>. Moreover, the [[reproducing kernel Hilbert space]] (RKHS) associated to <math> R </math> coincides with the [[Cameron–Martin theorem]] associated space <math> R(H)</math> of <math> X</math>, and all the spaces <math> R(H)</math>, <math> H_X</math>, and <math>\mathcal{H}(K)</math> are isometric.<ref name="Viitasaari2014">{{cite journal|last1=Azmoodeh|first1= Ehsan | last2=Sottinen | first2= Tommi | last3= Viitasaari | first3 =Lauri |last4= Yazigi| first4= Adil |title=Necessary and sufficient conditions for Hölder continuity of Gaussian processes|journal= Statistics & Probability Letters | volume=94 |year=2014|pages=230–235|doi=10.1016/j.spl.2014.07.030|arxiv=1403.2215 }}</ref> From now on, let <math>\mathcal{H}(R)</math> be a [[reproducing kernel Hilbert space]] with positive definite kernel <math>R</math>. Driscoll's zero-one law is a result characterizing the sample functions generated by a Gaussian process: <math display="block">\lim_{n\to\infty} \operatorname{tr}[K_n R_n^{-1}] < \infty,</math> where <math>K_n</math> and <math>R_n</math> are the covariance matrices of all possible pairs of <math>n</math> points, implies <math display="block">\Pr[f \in \mathcal{H}(R)] = 1.</math> Moreover, <math display="block">\lim_{n\to\infty} \operatorname{tr}[K_n R_n^{-1}] = \infty</math> implies <ref name="Driscoll1973">{{cite journal|last1=Driscoll|first1=Michael F.|title=The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process|journal=Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete | volume=26|issue=4|year=1973|pages=309–316|issn=0044-3719|doi=10.1007/BF00534894|s2cid=123348980|doi-access=free}}</ref> <math display="block">\Pr[f \in \mathcal{H}(R)] = 0.</math> This has significant implications when <math>K = R</math>, as <math display="block">\lim_{n \to \infty} \operatorname{tr}[R_n R_n^{-1}] = \lim_{n\to\infty}\operatorname{tr}[I] = \lim_{n \to \infty} n = \infty.</math> As such, almost all sample paths of a mean-zero Gaussian process with positive definite kernel <math>K</math> will lie outside of the Hilbert space <math>\mathcal{H}(K)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)