Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian units
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Dielectric and magnetic materials === Below are the expressions for the various fields in a dielectric medium. It is assumed here for simplicity that the medium is homogeneous, linear, isotropic, and nondispersive, so that the [[permittivity]] is a simple constant. {| class="wikitable" |+ Expressions for fields in dielectric media |- ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- | <math>\mathbf{D}^{_\mathrm{G}} = \mathbf{E}^{_\mathrm{G}}+4\pi\mathbf{P}^{_\mathrm{G}}</math> | <math>\mathbf{D}^{_\mathrm{I}} = \varepsilon_0 \mathbf{E}^{_\mathrm{I}}+\mathbf{P}^{_\mathrm{I}}</math> |- | <math>\mathbf{P}^{_\mathrm{G}} = \chi^{_\mathrm{G}}_\mathrm{e}\mathbf{E}^{_\mathrm{G}}</math> | <math>\mathbf{P}^{_\mathrm{I}} = \chi^{_\mathrm{I}}_\mathrm{e}\varepsilon_0\mathbf{E}^{_\mathrm{I}}</math> |- | <math>\mathbf{D}^{_\mathrm{G}} = \varepsilon^{_\mathrm{G}}\mathbf{E}^{_\mathrm{G}}</math> | <math>\mathbf{D}^{_\mathrm{I}} = \varepsilon^{_\mathrm{I}}\mathbf{E}^{_\mathrm{I}}</math> |- | <math>\varepsilon^{_\mathrm{G}} = 1+4\pi\chi^{_\mathrm{G}}_\mathrm{e}</math> | <math>\varepsilon^{_\mathrm{I}}/\varepsilon_0 = 1+\chi^{_\mathrm{I}}_\mathrm{e}</math> |} where * {{math|'''E'''}} and {{math|'''D'''}} are the [[electric field]] and [[Electric displacement field|displacement field]], respectively; * {{math|'''P'''}} is the [[polarization density]]; * <math>\varepsilon</math> is the [[permittivity]]; * <math>\varepsilon_0</math> is the [[permittivity of vacuum]] (used in the SI system, but meaningless in Gaussian units); and * <math>\chi_\mathrm{e}</math> is the [[electric susceptibility]]. The quantities <math>\varepsilon^{_\mathrm{G}}</math> and <math>\varepsilon^{_\mathrm{I}}/\varepsilon_0</math> are both dimensionless, and they have the same numeric value. By contrast, the [[electric susceptibility]] <math>\chi_\mathrm{e}^{_\mathrm{G}}</math> and <math>\chi_\mathrm{e}^{_\mathrm{I}}</math> are both unitless, but have {{em|different numeric values}} for the same material: <math display="block">4\pi \chi_\mathrm{e}^{_\mathrm{G}} = \chi_\mathrm{e}^{_\mathrm{I}}\,.</math> Next, here are the expressions for the various fields in a magnetic medium. Again, it is assumed that the medium is homogeneous, linear, isotropic, and nondispersive, so that the [[Permeability (electromagnetism)|permeability]] is a simple constant. {| class="wikitable" |+ Expressions for fields in magnetic media |- ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- | <math>\mathbf{B}^{_\mathrm{G}} = \mathbf{H}^{_\mathrm{G}}+4\pi\mathbf{M}^{_\mathrm{G}}</math> | <math>\mathbf{B}^{_\mathrm{I}} = \mu_0 (\mathbf{H}^{_\mathrm{I}}+\mathbf{M}^{_\mathrm{I}})</math> |- | <math>\mathbf{M}^{_\mathrm{G}} = \chi^{_\mathrm{G}}_\mathrm{m}\mathbf{H}^{_\mathrm{G}}</math> | <math>\mathbf{M}^{_\mathrm{I}} = \chi^{_\mathrm{I}}_\mathrm{m}\mathbf{H}^{_\mathrm{I}}</math> |- | <math>\mathbf{B}^{_\mathrm{G}} = \mu^{_\mathrm{G}}\mathbf{H}^{_\mathrm{G}}</math> | <math>\mathbf{B}^{_\mathrm{I}} = \mu^{_\mathrm{I}}\mathbf{H}^{_\mathrm{I}}</math> |- | <math>\mu^{_\mathrm{G}} = 1+4\pi\chi^{_\mathrm{G}}_\mathrm{m}</math> | <math>\mu^{_\mathrm{I}}/\mu_0 = 1+\chi^{_\mathrm{I}}_\mathrm{m}</math> |} where * {{math|'''B'''}} and {{math|'''H'''}} are the [[magnetic field]]s; * {{math|'''M'''}} is [[magnetization]]; * <math>\mu</math> is [[magnetic permeability]]; * <math>\mu_0</math> is the [[permeability of vacuum]] (used in the SI system, but meaningless in Gaussian units); and * <math>\chi_\mathrm{m}</math> is the [[magnetic susceptibility]]. The quantities <math>\mu^{_\mathrm{G}}</math> and <math>\mu^{_\mathrm{I}}/\mu_0</math> are both dimensionless, and they have the same numeric value. By contrast, the [[magnetic susceptibility]] <math>\chi_\mathrm{m}^{_\mathrm{G}}</math> and <math>\chi_\mathrm{m}^{_\mathrm{I}}</math> are both unitless, but has {{em|different numeric values}} in the two systems for the same material: <math display="block">4\pi \chi_\mathrm{m}^{_\mathrm{G}} = \chi_\mathrm{m}^{_\mathrm{I}}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)