Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
General relativity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Model-building === The core concept of general-relativistic model-building is that of a [[solutions of the Einstein field equations|solution of Einstein's equations]]. Given both Einstein's equations and suitable equations for the properties of matter, such a solution consists of a specific semi-[[Riemannian manifold]] (usually defined by giving the metric in specific coordinates), and specific matter fields defined on that manifold. Matter and geometry must satisfy Einstein's equations, so in particular, the matter's energy–momentum tensor must be divergence-free. The matter must, of course, also satisfy whatever additional equations were imposed on its properties. In short, such a solution is a model universe that satisfies the laws of general relativity, and possibly additional laws governing whatever matter might be present.<ref>Introductory chapters of {{Harvnb|Stephani|Kramer|MacCallum|Hoenselaers|2003}}</ref> Einstein's equations are nonlinear partial differential equations and, as such, difficult to solve exactly.<ref>A review showing Einstein's equation in the broader context of other PDEs with physical significance is {{Harvnb|Geroch|1996}}</ref> Nevertheless, a number of [[exact solutions in general relativity|exact solutions]] are known, although only a few have direct physical applications.<ref>For background information and a list of solutions, cf. {{Harvnb|Stephani|Kramer|MacCallum|Hoenselaers|2003}}; a more recent review can be found in {{Harvnb|MacCallum|2006}}</ref> The best-known exact solutions, and also those most interesting from a physics point of view, are the [[Schwarzschild solution]], the [[Reissner–Nordström solution]] and the [[Kerr metric]], each corresponding to a certain type of black hole in an otherwise empty universe,<ref>{{Harvnb|Chandrasekhar|1983|loc=ch. 3,5,6}}</ref> and the [[Friedmann–Lemaître–Robertson–Walker metric|Friedmann–Lemaître–Robertson–Walker]] and [[de Sitter universe]]s, each describing an expanding cosmos.<ref>{{Harvnb|Narlikar|1993|loc=ch. 4, sec. 3.3}}</ref> Exact solutions of great theoretical interest include the [[Gödel metric|Gödel universe]] (which opens up the intriguing possibility of [[time travel]] in curved spacetimes), the [[Taub–NUT space|Taub–NUT solution]] (a model universe that is [[Homogeneity (physics)|homogeneous]], but [[anisotropic]]), and [[anti-de Sitter space]] (which has recently come to prominence in the context of what is called the [[Maldacena conjecture]]).<ref>Brief descriptions of these and further interesting solutions can be found in {{Harvnb|Hawking|Ellis|1973|loc=ch. 5}}</ref> Given the difficulty of finding exact solutions, Einstein's field equations are also solved frequently by [[numerical integration]] on a computer, or by considering small perturbations of exact solutions. In the field of [[numerical relativity]], powerful computers are employed to simulate the geometry of spacetime and to solve Einstein's equations for interesting situations such as two colliding black holes.<ref>{{Harvnb|Lehner|2002}}</ref> In principle, such methods may be applied to any system, given sufficient computer resources, and may address fundamental questions such as [[naked singularity|naked singularities]]. Approximate solutions may also be found by [[perturbation theory|perturbation theories]] such as [[linearized gravity]]<ref>For instance {{Harvnb|Wald|1984|loc=sec. 4.4}}</ref> and its generalization, the [[post-Newtonian expansion]], both of which were developed by Einstein. The latter provides a systematic approach to solving for the geometry of a spacetime that contains a distribution of matter that moves slowly compared with the speed of light. The expansion involves a series of terms; the first terms represent Newtonian gravity, whereas the later terms represent ever smaller corrections to Newton's theory due to general relativity.<ref>{{Harvnb|Will|1993|loc=sec. 4.1 and 4.2}}</ref> An extension of this expansion is the parametrized post-Newtonian (PPN) formalism, which allows quantitative comparisons between the predictions of general relativity and alternative theories.<ref>{{Harvnb|Will|2006|loc=sec. 3.2}}, {{Harvnb|Will|1993|loc=ch. 4}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)