Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generalized coordinates
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Double pendulum=== [[File:Double-Pendulum.svg|thumb|right|A [[double pendulum]]]] The benefits of generalized coordinates become apparent with the analysis of a [[double pendulum]]. For the two masses {{math|1=''m{{sub|i}}'' (''i'' = 1, 2)}}, let {{math|1='''r'''{{sub|''i''}} = (''x{{sub|i}}'', ''y{{sub|i}}''), ''i'' = 1, 2}} define their two trajectories. These vectors satisfy the two constraint equations, :<math>f_1 (x_1, y_1, x_2, y_2) = \mathbf{r}_1\cdot \mathbf{r}_1 - L_1^2 = 0</math> and :<math>f_2 (x_1, y_1, x_2, y_2) = (\mathbf{r}_2-\mathbf{r}_1) \cdot (\mathbf{r}_2-\mathbf{r}_1) - L_2^2 = 0.</math> The formulation of Lagrange's equations for this system yields six equations in the four Cartesian coordinates {{math|1=''x{{sub|i}}'', ''y{{sub|i}}'' (''i'' = 1, 2)}} and the two Lagrange multipliers {{math|1= ''λ{{sub|i}}'' (''i'' = 1, 2)}} that arise from the two constraint equations. Now introduce the generalized coordinates {{math|1=''θ{{sub|i}}'' (''i'' = 1, 2)}} that define the angular position of each mass of the double pendulum from the vertical direction. In this case, we have :<math>\mathbf{r}_1 = (L_1\sin\theta_1, -L_1\cos\theta_1), \quad \mathbf{r}_2 = (L_1\sin\theta_1, -L_1\cos\theta_1) + (L_2\sin\theta_2, -L_2\cos\theta_2).</math> The force of gravity acting on the masses is given by, :<math>\mathbf{F}_1=(0,-m_1 g),\quad \mathbf{F}_2=(0,-m_2 g)</math> where {{mvar|g}} is the acceleration due to gravity. Therefore, the virtual work of gravity on the two masses as they follow the trajectories {{math|1='''r'''{{sub|''i''}} (''i'' = 1, 2)}} is given by :<math> \delta W = \mathbf{F}_1\cdot\delta \mathbf{r}_1 + \mathbf{F}_2\cdot\delta \mathbf{r}_2.</math> The variations {{math|1=δ'''r'''{{sub|''i''}} (''i'' = 1, 2)}} can be computed to be :<math> \delta \mathbf{r}_1 = (L_1\cos\theta_1, L_1\sin\theta_1)\delta\theta_1, \quad \delta \mathbf{r}_2 = (L_1\cos\theta_1, L_1\sin\theta_1)\delta\theta_1 +(L_2\cos\theta_2, L_2\sin\theta_2)\delta\theta_2</math> Thus, the virtual work is given by :<math>\delta W = -(m_1+m_2)gL_1\sin\theta_1\delta\theta_1 - m_2gL_2\sin\theta_2\delta\theta_2,</math> and the generalized forces are :<math>F_{\theta_1} = -(m_1+m_2)gL_1\sin\theta_1,\quad F_{\theta_2} = -m_2gL_2\sin\theta_2.</math> Compute the kinetic energy of this system to be :<math> T= \frac{1}{2}m_1 \mathbf{v}_1\cdot\mathbf{v}_1 + \frac{1}{2}m_2 \mathbf{v}_2\cdot\mathbf{v}_2 = \frac{1}{2}(m_1+m_2)L_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2L_2^2\dot{\theta}_2^2 + m_2L_1L_2 \cos(\theta_2-\theta_1)\dot{\theta}_1\dot{\theta}_2.</math> [[Euler–Lagrange equation]] yield two equations in the unknown generalized coordinates {{math|1=''θ{{sub|i}}'' (''i'' = 1, 2)}} given by<ref>Eric W. Weisstein, [http://scienceworld.wolfram.com/physics/DoublePendulum.html Double Pendulum], scienceworld.wolfram.com. 2007</ref> :<math>(m_1+m_2)L_1^2\ddot{\theta}_1+m_2L_1L_2\ddot{\theta}_2\cos(\theta_2-\theta_1) + m_2L_1L_2\dot{\theta_2}^2\sin(\theta_1-\theta_2) = -(m_1+m_2)gL_1\sin\theta_1,</math> and :<math>m_2L_2^2\ddot{\theta}_2+m_2L_1L_2\ddot{\theta}_1\cos(\theta_2-\theta_1) + m_2L_1L_2\dot{\theta_1}^2\sin(\theta_2-\theta_1)=-m_2gL_2\sin\theta_2.</math> The use of the generalized coordinates {{math|1=''θ{{sub|i}}'' (''i'' = 1, 2)}} provides an alternative to the Cartesian formulation of the dynamics of the double pendulum.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)