Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geographic coordinate conversion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Ferrari's solution ==== The quartic equation of <math>\kappa</math>, derived from the above, <!--for this transformation--> can be solved by [[Quartic equation#Ferrari.27s solution|Ferrari's solution]]<ref>{{cite journal|first1=H. |last1=Vermeille, H.|title=Direct Transformation from Geocentric to Geodetic Coordinates|journal= J. Geod.|volume=76|number=8|pages=451–454 |year= 2002|doi=10.1007/s00190-002-0273-6|s2cid=120075409 }}</ref><ref>{{cite journal|first1=Laureano|last1=Gonzalez-Vega|first2=Irene|last2=PoloBlanco|title=A symbolic analysis of Vermeille and Borkowski polynomials for transforming 3D Cartesian to geodetic coordinates|journal=J. Geod.|volume=83|number=11|pages=1071–1081|doi=10.1007/s00190-009-0325-2|year=2009|bibcode=2009JGeod..83.1071G |s2cid=120864969 }}</ref> to yield: : <math> \begin{align} \zeta &= \left(1 - e^2\right)\frac{z^2}{a^2} ,\\[4pt] \rho &= \frac{1}{6}\left(\frac{p^2}{a^2} + \zeta - e^4\right) ,\\[4pt] s &= \frac{e^4 \zeta p^2}{4\rho^3 a^2} ,\\[4pt] t &= \sqrt[3]{1 + s + \sqrt{s(s + 2)}} ,\\[4pt] u &= \rho \left(t + 1 + \frac{1}{t}\right) ,\\[4pt] v &= \sqrt{u^2 + e^4 \zeta} ,\\[4pt] w &= e^2 \frac{u + v - \zeta}{2v} ,\\[4pt] \kappa &= 1 + e^2 \frac{\sqrt{u + v + w^2} + w}{u + v}. \end{align} </math> ===== The application of Ferrari's solution ===== A number of techniques and algorithms are available but the most accurate, according to Zhu,<ref>{{cite journal|first1=J.|last1=Zhu|title=Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates|journal=IEEE Transactions on Aerospace and Electronic Systems|volume=30|issue=3|year=1994|pages=957–961|doi=10.1109/7.303772|bibcode=1994ITAES..30..957Z }}</ref> is the following procedure established by Heikkinen,<ref>{{cite journal|first1=M.|last1=Heikkinen|title=Geschlossene formeln zur berechnung räumlicher geodätischer koordinaten aus rechtwinkligen koordinaten.|journal=Z. Vermess.|volume=107|year=1982|pages=207–211|language=de}}</ref> as cited by Zhu. This overlaps with above. It is assumed that geodetic parameters <math>\{a,\, b,\, e\}</math> are known : <math>\begin{align} a &= 6378137.0 \text{ m. Earth Equatorial Radius} \\[3pt] b &= 6356752.3142 \text{ m. Earth Polar Radius} \\[3pt] e^2 &= \frac{a^2-b^2}{a^2} \\[3pt] e'^2 &= \frac{a^2 - b^2}{b^2} \\[3pt] p &= \sqrt{X^2 + Y^2} \\[3pt] F &= 54b^2 Z^2 \\[3pt] G &= p^2 + \left(1 - e^2\right)Z^2 - e^2\left(a^2 - b^2\right) \\[3pt] c &= \frac{e^4 Fp^2}{G^3} \\[3pt] s &= \sqrt[3]{1 + c + \sqrt{c^2 + 2c}} \\[3pt] k &= s + 1 + \frac{1}{s}\\[3pt] P &= \frac{F}{3 k^2 G^2} \\[3pt] Q &= \sqrt{1 + 2e^4 P} \\[3pt] r_0 &= \frac{-Pe^2 p}{1 + Q} + \sqrt{\frac{1}{2} a^2\left(1 + \frac{1}{Q}\right) - \frac{P\left(1 - e^2\right)Z^2}{Q(1 + Q)} - \frac{1}{2}Pp^2} \\[3pt] U &= \sqrt{\left(p - e^2 r_0\right)^2 + Z^2} \\[3pt] V &= \sqrt{\left(p - e^2 r_0\right)^2 + \left(1 - e^2\right)Z^2} \\[3pt] z_0 &= \frac{b^2 Z}{aV} \\[3pt] h &= U\left(1 - \frac{b^2}{aV}\right) \\[3pt] \phi &= \arctan\left[\frac{Z + e'^2 z_0}{p}\right] \\[3pt] \lambda &= \operatorname{arctan2}[Y,\, X] \end{align}</math> Note: [[atan2|arctan2]][Y, X] is the four-quadrant inverse tangent function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)