Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Global Positioning System
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Receiver in continuous operation === The description above is representative of a receiver start-up situation. Most receivers have a [[track algorithm]], sometimes called a ''tracker'', that combines sets of satellite measurements collected at different timesβin effect, taking advantage of the fact that successive receiver positions are usually close to each other. After a set of measurements are processed, the tracker predicts the receiver location corresponding to the next set of satellite measurements. When the new measurements are collected, the receiver uses a weighting scheme to combine the new measurements with the tracker prediction. In general, a tracker can (a) improve receiver position and time accuracy, (b) reject bad measurements, and (c) estimate receiver speed and direction. The disadvantage of a tracker is that changes in speed or direction can be computed only with a delay, and that derived direction becomes inaccurate when the distance traveled between two position measurements drops below or near the [[random error]] of position measurement. GPS units can use measurements of the [[Doppler shift]] of the signals received to compute velocity accurately.<ref>{{cite book |title=Global Positioning Systems, Inertial Navigation, and Integration |edition=2nd |first1=Mohinder S. |last1=Grewal |first2=Lawrence R. |last2=Weill |first3=Angus P. |last3=Andrews |publisher=John Wiley & Sons |year=2007 |isbn=978-0-470-09971-1 |pages=[{{google books|plainurl=y|id=6P7UNphJ1z8C|page=92 |title=Extract of pages 92β93}} 92β93] |url={{google books|plainurl=y|id=6P7UNphJ1z8C}}}}</ref> More advanced navigation systems use additional sensors like a [[compass]] or an [[inertial navigation system]] to complement GPS.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)