Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gradient
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Linear approximation to a function==== The best [[linear approximation]] to a function can be expressed in terms of the gradient, rather than the derivative. The gradient of a [[function (mathematics)|function]] <math>f</math> from the Euclidean space <math>\R^n</math> to <math>\R</math> at any particular point <math>x_0</math> in <math>\R^n</math> characterizes the best [[linear approximation]] to <math>f</math> at <math>x_0</math>. The approximation is as follows: <math display="block">f(x) \approx f(x_0) + (\nabla f)_{x_0}\cdot(x-x_0)</math> for <math>x</math> close to <math>x_0</math>, where <math>(\nabla f)_{x_0}</math> is the gradient of <math>f</math> computed at <math>x_0</math>, and the dot denotes the dot product on <math>\R^n</math>. This equation is equivalent to the first two terms in the [[Taylor series#Taylor series in several variables|multivariable Taylor series]] expansion of <math>f</math> at <math>x_0</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)