Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harmonic oscillator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Amplitude part ==== [[Image:Harmonic oscillator gain.svg|thumb|[[Bode plot]] of the frequency response of an ideal harmonic oscillator]] Squaring both equations and adding them together gives <math display="block">\left. \begin{aligned} A^2 (1-\omega^2)^2 &= \cos^2\varphi \\ (2 \zeta \omega A)^2 &= \sin^2\varphi \end{aligned} \right\} \Rightarrow A^2[(1 - \omega^2)^2 + (2 \zeta \omega)^2] = 1.</math> Therefore, <math display="block">A = A(\zeta, \omega) = \sgn \left( \frac{-\sin\varphi}{2 \zeta \omega} \right) \frac{1}{\sqrt{(1 - \omega^2)^2 + (2 \zeta \omega)^2}}.</math> Compare this result with the theory section on [[resonance]], as well as the "magnitude part" of the [[RLC circuit]]. This amplitude function is particularly important in the analysis and understanding of the [[frequency response]] of second-order systems.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)