Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hartree–Fock method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Total energy=== The optimal total energy <math> E_{HF} </math> can be written in terms of molecular orbitals. :<math> E_{HF} = \sum_{i=1}^{N} \hat h_{ii} + \sum_{i=1}^{N} \sum_{j=1}^{N/2} [2\hat J_{ij} - \hat K_{ij}] + V_{\text{nucl}} </math> <math>\hat J_{ij}</math> and <math>\hat K_{ij}</math> are matrix elements of the Coulomb and exchange operators respectively, and <math>V_{\text{nucl}}</math> is the total electrostatic repulsion between all the nuclei in the molecule. The total energy is not equal to the sum of orbital energies. If the atom or molecule is [[closed shell]], the total energy according to the Hartree-Fock method is : <math>E_{HF} = 2 \sum_{i=1}^{N/2} \hat h_{ii} + \sum_{i=1}^{N/2} \sum_{j=1}^{N/2} [2\hat J_{ij} - \hat K_{ij}] + V_{\text{nucl}}.</math><ref name= Levine>Levine, Ira N. (1991). Quantum Chemistry (4th ed.). Englewood Cliffs, New Jersey: Prentice Hall. p. 402-3. {{ISBN|0-205-12770-3}}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)