Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Helmholtz decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalization to higher dimensions == === Matrix approach === The generalization to <math>d</math> dimensions cannot be done with a vector potential, since the rotation operator and the [[cross product]] are defined (as vectors) only in three dimensions. Let <math>\mathbf{F}</math> be a vector field on a bounded domain <math>V\subseteq\mathbb{R}^d</math> which decays faster than <math>|\mathbf{r}|^{-\delta}</math> for <math>|\mathbf{r}| \to \infty</math> and <math>\delta > 2</math>. The scalar potential is defined similar to the three dimensional case as: <math display="block">\Phi(\mathbf{r}) = - \int_{\mathbb{R}^d} \operatorname{div}(\mathbf{F}(\mathbf{r}')) K(\mathbf{r}, \mathbf{r}') \mathrm{d}V' = - \int_{\mathbb{R}^d} \sum_i \frac{\partial F_i}{\partial r_i}(\mathbf{r}') K(\mathbf{r}, \mathbf{r}') \mathrm{d}V',</math> where as the integration kernel <math>K(\mathbf{r}, \mathbf{r}')</math> is again the [[fundamental solution]] of [[Laplace's equation]], but in d-dimensional space: <math display="block">K(\mathbf{r}, \mathbf{r}') = \begin{cases} \frac{1}{2\pi} \log{ | \mathbf{r}-\mathbf{r}' | } & d=2, \\ \frac{1}{d(2-d)V_d} | \mathbf{r}-\mathbf{r}' | ^{2-d} & \text{otherwise}, \end{cases}</math> with <math>V_d = \pi^\frac{d}{2} / \Gamma\big(\tfrac{d}{2}+1\big)</math> the volume of the d-dimensional [[unit ball]]s and <math>\Gamma(\mathbf{r})</math> the [[gamma function]]. For <math>d = 3</math>, <math>V_d</math> is just equal to <math>\frac{4 \pi}{3}</math>, yielding the same prefactor as above. The rotational potential is an [[antisymmetric matrix]] with the elements: <math display="block">A_{ij}(\mathbf{r}) = \int_{\mathbb{R}^d} \left( \frac{\partial F_i}{\partial x_j}(\mathbf{r}') - \frac{\partial F_j}{\partial x_i}(\mathbf{r}') \right) K(\mathbf{r}, \mathbf{r}') \mathrm{d}V'. </math> Above the diagonal are <math>\textstyle\binom{d}{2}</math> entries which occur again mirrored at the diagonal, but with a negative sign. In the three-dimensional case, the matrix elements just correspond to the components of the vector potential <math>\mathbf{A} = [A_1, A_2, A_3] = [A_{23}, A_{31}, A_{12}]</math>. However, such a matrix potential can be written as a vector only in the three-dimensional case, because <math>\textstyle\binom{d}{2} = d</math> is valid only for <math>d = 3</math>. As in the three-dimensional case, the gradient field is defined as <math display="block"> \mathbf{G}(\mathbf{r}) = - \nabla \Phi(\mathbf{r}). </math> The rotational field, on the other hand, is defined in the general case as the row divergence of the matrix: <math display="block">\mathbf{R}(\mathbf{r}) = \left[ \sum\nolimits_k \partial_{r_k} A_{ik}(\mathbf{r}); {1 \leq i \leq d} \right].</math> In three-dimensional space, this is equivalent to the rotation of the vector potential.<ref name="glotzl2023" /><ref name="glotzl2020" /> === Tensor approach === In a <math>d</math>-dimensional vector space with <math>d\neq 3</math>, <math display="inline">-\frac{1}{4\pi\left|\mathbf{r}-\mathbf{r}'\right|}</math> can be replaced by the appropriate [[Green's function#Green's functions for the Laplacian|Green's function for the Laplacian]], defined by <math display="block"> \nabla^2 G(\mathbf{r},\mathbf{r}') = \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') = \delta^d(\mathbf{r}-\mathbf{r}') </math> where [[Einstein notation|Einstein summation convention]] is used for the index <math>\mu</math>. For example, <math display="inline">G(\mathbf{r},\mathbf{r}')=\frac{1}{2\pi}\ln\left|\mathbf{r}-\mathbf{r}'\right|</math> in 2D. Following the same steps as above, we can write <math display="block"> F_\mu(\mathbf{r}) = \int_V F_\mu(\mathbf{r}') \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}' = \delta_{\mu\nu}\delta_{\rho\sigma}\int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\rho}\frac{\partial}{\partial r_\sigma}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}' </math> where <math>\delta_{\mu\nu}</math> is the [[Kronecker delta]] (and the summation convention is again used). In place of the definition of the vector Laplacian used above, we now make use of an identity for the [[Levi-Civita symbol]] <math>\varepsilon</math>, <math display="block"> \varepsilon_{\alpha\mu\rho}\varepsilon_{\alpha\nu\sigma} = (d-2)!(\delta_{\mu\nu}\delta_{\rho\sigma} - \delta_{\mu\sigma}\delta_{\nu\rho}) </math> which is valid in <math>d\ge 2</math> dimensions, where <math>\alpha</math> is a <math>(d-2)</math>-component [[Multi-index notation|multi-index]]. This gives <math display="block"> F_\mu(\mathbf{r}) = \delta_{\mu\sigma}\delta_{\nu\rho}\int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\rho}\frac{\partial}{\partial r_\sigma}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}' + \frac{1}{(d-2)!}\varepsilon_{\alpha\mu\rho}\varepsilon_{\alpha\nu\sigma} \int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\rho}\frac{\partial}{\partial r_\sigma}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}' </math> We can therefore write <math display="block"> F_\mu(\mathbf{r}) = -\frac{\partial}{\partial r_\mu} \Phi(\mathbf{r}) + \varepsilon_{\mu\rho\alpha}\frac{\partial}{\partial r_\rho} A_{\alpha}(\mathbf{r}) </math> where <math display="block"> \begin{aligned} \Phi(\mathbf{r}) &= -\int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\nu}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}'\\ A_{\alpha} &= \frac{1}{(d-2)!}\varepsilon_{\alpha\nu\sigma} \int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\sigma}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}' \end{aligned} </math> Note that the vector potential is replaced by a rank-<math>(d-2)</math> tensor in <math>d</math> dimensions. Because <math>G(\mathbf{r},\mathbf{r}')</math> is a function of only <math>\mathbf{r}-\mathbf{r}'</math>, one can replace <math>\frac{\partial}{\partial r_\mu}\rightarrow - \frac{\partial}{\partial r'_\mu}</math>, giving <math display="block"> \begin{aligned} \Phi(\mathbf{r}) &= \int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r'_\nu}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}'\\ A_{\alpha} &= -\frac{1}{(d-2)!}\varepsilon_{\alpha\nu\sigma} \int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\sigma'}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}' \end{aligned} </math> [[Integration_by_parts#Higher_dimensions|Integration by parts]] can then be used to give <math display="block"> \begin{aligned} \Phi(\mathbf{r}) &= -\int_V G(\mathbf{r},\mathbf{r}')\frac{\partial}{\partial r'_\nu}F_\nu(\mathbf{r}') \,\mathrm{d}^d \mathbf{r}' + \oint_{S} G(\mathbf{r},\mathbf{r}') F_\nu(\mathbf{r}') \hat{n}'_\nu \,\mathrm{d}^{d-1} \mathbf{r}'\\ A_{\alpha} &= \frac{1}{(d-2)!}\varepsilon_{\alpha\nu\sigma} \int_V G(\mathbf{r},\mathbf{r}') \frac{\partial}{\partial r_\sigma'}F_\nu(\mathbf{r}') \,\mathrm{d}^d \mathbf{r}'- \frac{1}{(d-2)!}\varepsilon_{\alpha\nu\sigma} \oint_{S} G(\mathbf{r},\mathbf{r}') F_\nu(\mathbf{r}') \hat{n}'_\sigma \,\mathrm{d}^{d-1} \mathbf{r}' \end{aligned} </math> where <math>S=\partial V</math> is the boundary of <math>V</math>. These expressions are analogous to those given above for [[#Three-dimensional_space|three-dimensional space]]. For a further generalization to manifolds, see the discussion of [[Hodge decomposition]] [[#Differential forms|below]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)