Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
History of cryptography
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Claude Shannon=== [[Claude Shannon|Claude E. Shannon]] is considered by many{{weasel inline|date=January 2018}} to be the father of mathematical cryptography. Shannon worked for several years at Bell Labs, and during his time there, he produced an article entitled "A mathematical theory of cryptography". This article was written in 1945 and eventually was published in the Bell System Technical Journal in 1949.<ref name="Shannon1949">[http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf Communication theory of secrecy systems] {{Webarchive|url=https://web.archive.org/web/20070605092733/http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf |date=5 June 2007 }}, Claude Shannon, 1949</ref> It is commonly accepted that this paper was the starting point for development of modern cryptography. Shannon was inspired during the war to address "[t]he problems of cryptography [because] secrecy systems furnish an interesting application of communication theory". Shannon identified the two main goals of cryptography: secrecy and authenticity. His focus was on exploring secrecy and thirty-five years later, G.J. Simmons would address the issue of authenticity. Shannon wrote a further article entitled "A mathematical theory of communication" which highlights one of the most significant aspects of his work: cryptography's transition from art to science.<ref name="Claude Shannon" /> In his works, Shannon described the two basic types of systems for secrecy. The first are those designed with the intent to protect against hackers and attackers who have infinite resources with which to decode a message (theoretical secrecy, now unconditional security), and the second are those designed to protect against hackers and attacks with finite resources with which to decode a message (practical secrecy, now computational security). Most of Shannon's work focused around theoretical secrecy; here, Shannon introduced a definition for the "unbreakability" of a cipher. If a cipher was determined "unbreakable", it was considered to have "perfect secrecy". In proving "perfect secrecy", Shannon determined that this could only be obtained with a secret key whose length given in binary digits was greater than or equal to the number of bits contained in the information being encrypted. Furthermore, Shannon developed the "unicity distance", defined as the "amount of plaintext that⦠determines the secret key."<ref name="Claude Shannon" /> Shannon's work influenced further cryptography research in the 1970s, as the public-key cryptography developers, M. E. Hellman and W. Diffie cited Shannon's research as a major influence. His work also impacted modern designs of secret-key ciphers. At the end of Shannon's work with cryptography, progress slowed until Hellman and Diffie introduced their paper involving "public-key cryptography".<ref name="Claude Shannon" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)