Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hodge star operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== On manifolds == For an ''n''-dimensional oriented [[pseudo-Riemannian manifold]] ''M'', we apply the construction above to each [[cotangent space]] <math>\text{T}^*_p M</math> and its exterior powers <math display="inline">\bigwedge^k\text{T}^*_p M</math>, and hence to the differential ''k''[[differential form|-forms]] <math display="inline">\zeta\in\Omega^k(M) = \Gamma\left(\bigwedge^k\text{T}^*\!M\right)</math>, the [[Sheaf (mathematics)|global sections]] of the [[Vector bundle|bundle]] <math display="inline">\bigwedge^k \mathrm{T}^*\! M\to M</math>. The Riemannian metric induces a scalar product on <math display="inline">\bigwedge^k \text{T}^*_p M</math> at each point <math>p\in M</math>. We define the '''Hodge dual''' of a ''k''[[differential form|-form]] <math> \zeta </math>, defining <math>{\star} \zeta</math> as the unique (''n'' – ''k'')-form satisfying <math display="block">\eta\wedge {\star} \zeta \ =\ \langle \eta, \zeta \rangle \, \omega </math> for every ''k''-form <math> \eta </math>, where <math>\langle\eta,\zeta\rangle</math> is a real-valued function on <math>M</math>, and the [[Volume form#Riemannian volume form|volume form]] <math> \omega </math> is induced by the pseudo-Riemannian metric. Integrating this equation over <math>M</math>, the right side becomes the <math>L^2</math> ([[Sobolev space|square-integrable]]) [[Exterior algebra#Inner product|scalar product on ''k''-forms]], and we obtain: <math display="block">\int_M \eta\wedge {\star} \zeta \ =\ \int_M \langle\eta,\zeta\rangle\ \omega.</math> More generally, if <math>M</math> is non-orientable, one can define the Hodge star of a ''k''-form as a (''n'' – ''k'')-[[pseudotensor|pseudo differential form]]; that is, a differential form with values in the [[Canonical bundle|canonical line bundle]]. === Computation in index notation === We compute in terms of [[tensor index notation]] with respect to a (not necessarily orthonormal) basis <math display="inline">\left\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\right\}</math> in a tangent space <math>V = T_p M</math> and its dual basis <math>\{dx_1,\ldots,dx_n\}</math> in <math>V^* = T^*_p M</math>, having the metric matrix <math display="inline">(g_{ij}) = \left(\left\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right\rangle\right)</math> and its inverse matrix <math>(g^{ij}) = (\langle dx^i, dx^j\rangle)</math>. The Hodge dual of a decomposable ''k''-form is: <math display="block"> {\star}\left(dx^{i_1} \wedge \dots \wedge dx^{i_k}\right) \ =\ \frac{\sqrt{\left|\det [g_{ij}]\right|}}{(n-k)!} g^{i_1 j_1} \cdots g^{i_k j_k} \varepsilon_{j_1 \dots j_n} dx^{j_{k+1}} \wedge \dots \wedge dx^{j_n}. </math> Here <math>\varepsilon_{j_1 \dots j_n}</math> is the [[Levi-Civita symbol]] with <math>\varepsilon_{1 \dots n} = 1</math>, and we [[Einstein notation|implicitly take the sum]] over all values of the repeated indices <math> j_1,\ldots,j_n</math>. The factorial <math>(n-k)!</math> accounts for double counting, and is not present if the summation indices are restricted so that <math>j_{k+1} < \dots < j_n</math>. The absolute value of the determinant is necessary since it may be negative, as for tangent spaces to [[Pseudo-Riemannian manifold#Lorentzian manifold|Lorentzian manifold]]s. An arbitrary differential form can be written as follows: <math display="block"> \alpha \ =\ \frac{1}{k!}\alpha_{i_1, \dots, i_k} dx^{i_1}\wedge \dots \wedge dx^{i_k} \ =\ \sum_{i_1 < \dots < i_k} \alpha_{i_1, \dots, i_k} dx^{i_1}\wedge \dots \wedge dx^{i_k}. </math> The factorial <math>k!</math> is again included to account for double counting when we allow non-increasing indices. We would like to define the dual of the component <math>\alpha_{i_1, \dots, i_k}</math> so that the Hodge dual of the form is given by <math display="block"> {\star}\alpha = \frac{1}{(n-k)!}({\star} \alpha)_{i_{k+1}, \dots, i_n} dx^{i_{k+1}} \wedge \dots \wedge dx^{i_n}. </math> Using the above expression for the Hodge dual of <math>dx^{i_1} \wedge \dots \wedge dx^{i_k}</math>, we find:<ref>{{cite book| last=Frankel|first=T.| title=The Geometry of Physics| publisher=Cambridge University Press| year=2012| isbn=978-1-107-60260-1| edition=3rd}}</ref> <math display="block"> ({\star} \alpha)_{j_{k+1}, \dots, j_n} = \frac{\sqrt{\left|\det [g_{ab}]\right|}}{k!} \alpha_{i_1, \dots, i_k}\,g^{i_1 j_1}\cdots g^{i_k j_k} \,\varepsilon_{j_1, \dots, j_n}\, . </math> Although one can apply this expression to any tensor <math>\alpha</math>, the result is antisymmetric, since contraction with the completely anti-symmetric Levi-Civita symbol cancels all but the totally antisymmetric part of the tensor. It is thus equivalent to antisymmetrization followed by applying the Hodge star. The unit volume form <math display="inline">\omega = {\star} 1\in \bigwedge^n V^*</math> is given by: <math display="block">\omega = \sqrt{ \left| \det [g_{ij}] \right| }\;dx^1 \wedge \cdots \wedge dx^n .</math> === Codifferential === <!-- This section is linked from [[Differential form]] --> The most important application of the Hodge star on manifolds is to define the '''codifferential''' <math> \delta </math> on <math>k</math>-forms. Let <math display="block">\delta = (-1)^{n(k + 1) + 1} s\ {\star} d {\star} = (-1)^{k}\, {\star}^{-1} d {\star} </math> where <math>d</math> is the [[exterior derivative]] or differential, and <math>s = 1</math> for Riemannian manifolds. Then <math display="block">d:\Omega^k(M)\to \Omega^{k+1}(M)</math> while <math display="block">\delta:\Omega^k(M)\to \Omega^{k-1}(M).</math> The codifferential is not an [[antiderivation]] on the exterior algebra, in contrast to the exterior derivative. The codifferential is the [[Transpose of a linear map|adjoint]] of the exterior derivative with respect to the square-integrable scalar product: <math display="block"> \langle\!\langle\eta,\delta \zeta\rangle\!\rangle \ =\ \langle\!\langle d\eta,\zeta\rangle\!\rangle, </math> where <math> \zeta </math> is a <math>k</math>-form and <math> \eta </math> a <math>(k\!-\!1)</math>-form. This property is useful as it can be used to define the codifferential even when the manifold is non-orientable (and the Hodge star operator not defined). The identity can be proved from Stokes' theorem for smooth forms: <math display="block"> 0 \ =\ \int_M d (\eta \wedge {\star} \zeta) \ =\ \int_M \left(d \eta \wedge {\star} \zeta + (-1)^{k-1}\eta \wedge {\star} \,{\star}^{-1} d\, {\star} \zeta\right) \ =\ \langle\!\langle d\eta,\zeta\rangle\!\rangle - \langle\!\langle\eta,\delta\zeta\rangle\!\rangle, </math> provided <math>M</math> has empty boundary, or <math> \eta </math> or <math>{\star}\zeta</math> has zero boundary values. (The proper definition of the above requires specifying a [[topological vector space]] that is closed and complete on the space of smooth forms. The [[Sobolev space]] is conventionally used; it allows the convergent sequence of forms <math>\zeta_i \to \zeta</math> (as <math>i \to \infty</math>) to be interchanged with the combined differential and integral operations, so that <math>\langle\!\langle\eta,\delta \zeta_i\rangle\!\rangle \to \langle\!\langle\eta,\delta \zeta\rangle\!\rangle</math> and likewise for sequences converging to <math>\eta</math>.) Since the differential satisfies <math>d^2 = 0</math>, the codifferential has the corresponding property <math display="block">\delta^2 = (-1)^n s^2 {\star} d {\star} {\star} d {\star} = (-1)^{nk+k+1} s^3 {\star} d^2 {\star} = 0. </math> The [[Laplace–Beltrami operator|Laplace–deRham]] operator is given by <math display="block">\Delta = (\delta + d)^2 = \delta d + d\delta</math> and lies at the heart of [[Hodge theory]]. It is symmetric: <math display="block">\langle\!\langle\Delta \zeta,\eta\rangle\!\rangle = \langle\!\langle\zeta,\Delta \eta\rangle\!\rangle</math> and non-negative: <math display="block">\langle\!\langle\Delta\eta,\eta\rangle\!\rangle \ge 0.</math> The Hodge star sends [[harmonic form]]s to harmonic forms. As a consequence of [[Hodge theory]], the [[de Rham cohomology]] is naturally isomorphic to the space of harmonic {{mvar|k}}-forms, and so the Hodge star induces an isomorphism of cohomology groups <math display="block">{\star} : H^k_\Delta (M) \to H^{n-k}_\Delta(M),</math> which in turn gives canonical identifications via [[Poincaré duality]] of {{math|''H<sup> k</sup>''(''M'')}} with its [[dual space]]. In coordinates, with notation as above, the codifferential of the form <math>\alpha</math> may be written as <math display="block">\delta \alpha=\ -\frac{1}{k!}g^{ml}\left(\frac{\partial}{\partial x_l} \alpha_{m,i_1, \dots, i_{k-1}} - \Gamma^j_{ml} \alpha_{j,i_1, \dots, i_{k-1}} \right) dx^{i_1} \wedge \dots \wedge dx^{i_{k-1}},</math> where here <math>\Gamma^{j}_{ml}</math> denotes the [[Christoffel symbols]] of <math display="inline">\left\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\right\}</math>. ==== Poincare lemma for codifferential ==== In analogy to the [[Poincare lemma]] for [[exterior derivative]], one can define its version for codifferential, which reads<ref name=":0">{{Cite journal |last=Kycia |first=Radosław Antoni |date=2022-07-29 |title=The Poincare Lemma for Codifferential, Anticoexact Forms, and Applications to Physics |url=https://doi.org/10.1007/s00025-022-01646-z |journal=Results in Mathematics |language=en |volume=77 |issue=5 |pages=182 |doi=10.1007/s00025-022-01646-z |issn=1420-9012|arxiv=2009.08542 |s2cid=221802588 }}</ref> : ''If'' <math>\delta\omega=0</math> ''for'' <math>\omega \in \Lambda^{k}(U)</math>'', where '' <math>U</math> ''is a [[star domain]] on a manifold, then there is'' <math>\alpha \in \Lambda^{k+1}(U)</math> ''such that'' <math>\omega=\delta\alpha</math>''.'' A practical way of finding <math>\alpha</math> is to use cohomotopy operator <math>h</math>, that is a local inverse of <math>\delta</math>. One has to define a [[homotopy operator]]<ref name=":0" /> : <math>H\beta = \int_{0}^{1} \mathcal{K}\lrcorner\beta|_{F(t,x)}t^{k}dt,</math> where <math>F(t,x)=x_{0}+t(x-x_{0})</math> is the linear homotopy between its center <math>x_{0}\in U</math> and a point <math>x \in U</math>, and the (Euler) vector <math>\mathcal{K}=\sum_{i=1}^{n}(x-x_{0})^{i}\partial_{x^{i}}</math> for <math>n=\dim(U)</math> is inserted into the form <math>\beta \in \Lambda^{*}(U)</math>. We can then define cohomotopy operator as<ref name=":0" /> : <math>h:\Lambda(U)\rightarrow \Lambda(U), \quad h:=\eta {\star}^{-1}H\star</math>, where <math>\eta \beta = (-1)^{k}\beta</math> for <math>\beta \in \Lambda^{k}(U)</math>. The cohomotopy operator fulfills (co)homotopy invariance formula<ref name=":0" /> : <math>\delta h + h\delta = I - S_{x_{0}} ,</math> where <math>S_{x_{0}}={\star}^{-1}s_{x_{0}}^{*}{\star}</math>, and <math>s_{x_{0}}^{*}</math> is the [[Pullback (differential geometry)|pullback]] along the constant map <math>s_{x_{0}}:x \rightarrow x_{0}</math>. Therefore, if we want to solve the equation <math>\delta \omega =0</math>, applying cohomotopy invariance formula we get : <math> \omega= \delta h\omega + S_{x_{0}}\omega,</math> where <math>h\omega\in \Lambda^{k+1}(U)</math> is a differential form we are looking for, and "constant of integration" <math>S_{x_{0}}\omega</math> vanishes unless <math>\omega</math> is a top form. Cohomotopy operator fulfills the following properties:<ref name=":0" /> <math>h^{2}=0, \quad \delta h \delta =\delta, \quad h\delta h =h</math>. They make it possible to use it to define<ref name=":0" /> ''anticoexact'' forms on <math>U</math> by <math>\mathcal{Y}(U)=\{ \omega\in\Lambda(U)| \omega = h\delta \omega \}</math>, which together with [[Exact form|exact forms]] <math>\mathcal{C}(U) =\{ \omega\in\Lambda(U)|\omega = \delta h\omega \}</math> make a [[direct sum]] decomposition<ref name=":0" /> : <math>\Lambda(U)=\mathcal{C}(U)\oplus \mathcal{Y}(U)</math>. This direct sum is another way of saying that the cohomotopy invariance formula is a decomposition of unity, and the [[Projector operator|projector operators]] on the summands fulfills [[Idempotent (ring theory)|idempotence]] formulas:<ref name=":0" /> <math>(h\delta)^{2}=h\delta, \quad (\delta h)^{2}=\delta h</math>. These results are extension of similar results for exterior derivative.<ref>{{Cite book |last=Edelen |first=Dominic G. B. |url=https://www.worldcat.org/oclc/56347718 |title=Applied exterior calculus |date=2005 |isbn=978-0-486-43871-9 |edition=Revised |location=Mineola, N.Y. |oclc=56347718}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)