Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Householder transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Tridiagonalization (Hessenberg) ==== {{main|Tridiagonal matrix}} {{see also|Hessenberg matrix#Householder transformations}} This procedure is presented in Numerical Analysis by Burden and Faires, and works when the matrix is symmetric. In the non-symmetric case, it is still useful as a similar procedure can result in a Hessenberg matrix. It uses a slightly altered <math>\operatorname{sgn}</math> function with <math>\operatorname{sgn}(0) = 1</math>.<ref name='burden'>{{cite book |last1=Burden |first1=Richard |last2=Faires |first2=Douglas |last3=Burden |first3=Annette |title=Numerical analysis |date=2016 |publisher=Thomson Brooks/Cole |isbn=9781305253667 |edition=10th}}</ref> In the first step, to form the Householder matrix in each step we need to determine <math display="inline">\alpha</math> and <math display="inline">r</math>, which are: :<math>\begin{align} \alpha &= -\operatorname{sgn}\left(a_{21}\right)\sqrt{\sum_{j=2}^n a_{j1}^2}; \\ r &= \sqrt{\frac{1}{2}\left(\alpha^2 - a_{21}\alpha\right)}; \end{align}</math> From <math display="inline">\alpha</math> and <math display="inline">r</math>, construct vector <math display="inline">v</math>: :<math>\vec v^{(1)} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix},</math> where <math display="inline">v_1 = 0</math>, <math display="inline">v_2 = \frac{a_{21} - \alpha}{2r}</math>, and :<math>v_k = \frac{a_{k1}}{2r}</math> for each <math>k = 3, 4 \ldots n</math> Then compute: :<math>\begin{align} P^1 &= I - 2\vec v^{(1)} \left(\vec v^{(1)}\right)^\textsf{T} \\ A^{(2)} &= P^1 AP^1 \end{align}</math> Having found <math display="inline">P^1</math> and computed <math display="inline">A^{(2)}</math> the process is repeated for <math display="inline">k = 2, 3, \ldots, n - 2</math> as follows: :<math>\begin{align} \alpha &= -\operatorname{sgn}\left(a^k_{k+1,k}\right)\sqrt{\sum_{j=k+1}^n \left(a^k_{jk}\right)^2} \\[2pt] r &= \sqrt{\frac{1}{2}\left(\alpha^2 - a^k_{k+1,k}\alpha\right)} \\[2pt] v^k_1 &= v^k_2 = \cdots = v^k_k = 0 \\[2pt] v^k_{k+1} &= \frac{a^k_{k+1,k} - \alpha}{2r} \\ v^k_j &= \frac{a^k_{jk}}{2r} \text{ for } j = k + 2,\ k + 3,\ \ldots,\ n \\ P^k &= I - 2\vec v^{(k)} \left(\vec v^{(k)}\right)^\textsf{T} \\ A^{(k+1)} &= P^k A^{(k)}P^k \end{align}</math> Continuing in this manner, the tridiagonal and symmetric matrix is formed.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)