Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hyperbolic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Useful relations== {{Anchor|Osborn}} The hyperbolic functions satisfy many identities, all of them similar in form to the [[trigonometric identity|trigonometric identities]]. In fact, '''Osborn's rule'''<ref name="Osborn, 1902" /> states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for <math>\theta</math>, <math>2\theta</math>, <math>3\theta</math> or <math>\theta</math> and <math>\varphi</math> into a hyperbolic identity, by: # expanding it completely in terms of integral powers of sines and cosines, # changing sine to sinh and cosine to cosh, and # switching the sign of every term containing a product of two sinhs. Odd and even functions: <math display="block">\begin{align} \sinh (-x) &= -\sinh x \\ \cosh (-x) &= \cosh x \end{align}</math> Hence: <math display="block">\begin{align} \tanh (-x) &= -\tanh x \\ \coth (-x) &= -\coth x \\ \operatorname{sech} (-x) &= \operatorname{sech} x \\ \operatorname{csch} (-x) &= -\operatorname{csch} x \end{align}</math> Thus, {{math|cosh ''x''}} and {{math|sech ''x''}} are [[even function]]s; the others are [[odd functions]]. <math display="block">\begin{align} \operatorname{arsech} x &= \operatorname{arcosh} \left(\frac{1}{x}\right) \\ \operatorname{arcsch} x &= \operatorname{arsinh} \left(\frac{1}{x}\right) \\ \operatorname{arcoth} x &= \operatorname{artanh} \left(\frac{1}{x}\right) \end{align}</math> Hyperbolic sine and cosine satisfy: <math display="block">\begin{align} \cosh x + \sinh x &= e^x \\ \cosh x - \sinh x &= e^{-x} \end{align}</math> which are analogous to [[Euler's formula]], and <math display="block"> \cosh^2 x - \sinh^2 x = 1 </math> which is analogous to the [[Pythagorean trigonometric identity]]. One also has <math display="block">\begin{align} \operatorname{sech} ^{2} x &= 1 - \tanh^{2} x \\ \operatorname{csch} ^{2} x &= \coth^{2} x - 1 \end{align}</math> for the other functions. ===Sums of arguments=== <math display="block">\begin{align} \sinh(x + y) &= \sinh x \cosh y + \cosh x \sinh y \\ \cosh(x + y) &= \cosh x \cosh y + \sinh x \sinh y \\ \tanh(x + y) &= \frac{\tanh x +\tanh y}{1+ \tanh x \tanh y } \\ \end{align}</math> particularly <math display="block">\begin{align} \cosh (2x) &= \sinh^2{x} + \cosh^2{x} = 2\sinh^2 x + 1 = 2\cosh^2 x - 1 \\ \sinh (2x) &= 2\sinh x \cosh x \\ \tanh (2x) &= \frac{2\tanh x}{1+ \tanh^2 x } \\ \end{align}</math> Also: <math display="block">\begin{align} \sinh x + \sinh y &= 2 \sinh \left(\frac{x+y}{2}\right) \cosh \left(\frac{x-y}{2}\right)\\ \cosh x + \cosh y &= 2 \cosh \left(\frac{x+y}{2}\right) \cosh \left(\frac{x-y}{2}\right)\\ \end{align}</math> ===Subtraction formulas=== <math display="block">\begin{align} \sinh(x - y) &= \sinh x \cosh y - \cosh x \sinh y \\ \cosh(x - y) &= \cosh x \cosh y - \sinh x \sinh y \\ \tanh(x - y) &= \frac{\tanh x -\tanh y}{1- \tanh x \tanh y } \\ \end{align}</math> Also:<ref>{{cite book|last1=Martin|first1=George E.|title=The foundations of geometry and the non-Euclidean plane|date=1986 | publisher=Springer-Verlag|location=New York|isbn=3-540-90694-0|page=416|edition=1st corr.}}</ref> <math display="block">\begin{align} \sinh x - \sinh y &= 2 \cosh \left(\frac{x+y}{2}\right) \sinh \left(\frac{x-y}{2}\right)\\ \cosh x - \cosh y &= 2 \sinh \left(\frac{x+y}{2}\right) \sinh \left(\frac{x-y}{2}\right)\\ \end{align}</math> ===Half argument formulas=== <math display="block">\begin{align} \sinh\left(\frac{x}{2}\right) &= \frac{\sinh x}{\sqrt{2 (\cosh x + 1)} } &&= \sgn x \, \sqrt \frac{\cosh x - 1}{2} \\[6px] \cosh\left(\frac{x}{2}\right) &= \sqrt \frac{\cosh x + 1}{2}\\[6px] \tanh\left(\frac{x}{2}\right) &= \frac{\sinh x}{\cosh x + 1} &&= \sgn x \, \sqrt \frac{\cosh x-1}{\cosh x+1} = \frac{e^x - 1}{e^x + 1} \end{align}</math> where {{math|sgn}} is the [[sign function]]. If {{math|''x'' β 0}}, then<ref>{{cite web|title=Prove the identity tanh(x/2) = (cosh(x) - 1)/sinh(x) | url=https://math.stackexchange.com/q/1565753 |website=[[StackExchange]] (mathematics) | access-date=24 January 2016}}</ref> <math display="block"> \tanh\left(\frac{x}{2}\right) = \frac{\cosh x - 1}{\sinh x} = \coth x - \operatorname{csch} x </math> ===Square formulas=== <math display="block">\begin{align} \sinh^2 x &= \tfrac{1}{2}(\cosh 2x - 1) \\ \cosh^2 x &= \tfrac{1}{2}(\cosh 2x + 1) \end{align}</math> ===Inequalities=== The following inequality is useful in statistics:<ref>{{cite news |last1=Audibert |first1=Jean-Yves |date=2009 |title=Fast learning rates in statistical inference through aggregation |publisher=The Annals of Statistics |page=1627}} [https://projecteuclid.org/download/pdfview_1/euclid.aos/1245332827]</ref> <math display="block">\operatorname{cosh}(t) \leq e^{t^2 /2}.</math> It can be proved by comparing the Taylor series of the two functions term by term.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)