Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relationships among the inverse trigonometric functions=== [[Image:Arcsine Arccosine.svg|168px|right|thumb|The usual principal values of the arcsin(''x'') (red) and arccos(''x'') (blue) functions graphed on the cartesian plane.]] [[Image:Arctangent Arccotangent.svg|294px|right|thumb|The usual principal values of the arctan(''x'') and arccot(''x'') functions graphed on the cartesian plane.]] [[Image:Arcsecant Arccosecant.svg|294px|right|thumb|Principal values of the arcsec(''x'') and arccsc(''x'') functions graphed on the cartesian plane.]] Complementary angles: :<math>\begin{align} \arccos(x) &= \frac{\pi}{2} - \arcsin(x) \\[0.5em] \arccot(x) &= \frac{\pi}{2} - \arctan(x) \\[0.5em] \arccsc(x) &= \frac{\pi}{2} - \arcsec(x) \end{align}</math> Negative arguments: :<math>\begin{align} \arcsin(-x) &= -\arcsin(x) \\ \arccsc(-x) &= -\arccsc(x) \\ \arccos(-x) &= \pi -\arccos(x) \\ \arcsec(-x) &= \pi -\arcsec(x) \\ \arctan(-x) &= -\arctan(x) \\ \arccot(-x) &= \pi -\arccot(x) \end{align}</math> Reciprocal arguments: :<math>\begin{align} \arcsin\left(\frac{1}{x}\right) &= \arccsc(x) & \\[0.3em] \arccsc\left(\frac{1}{x}\right) &= \arcsin(x) & \\[0.3em] \arccos\left(\frac{1}{x}\right) &= \arcsec(x) & \\[0.3em] \arcsec\left(\frac{1}{x}\right) &= \arccos(x) & \\[0.3em] \arctan\left(\frac{1}{x}\right) &= \arccot(x) &= \frac{\pi}{2} - \arctan(x) \, , \text{ if } x > 0 \\[0.3em] \arctan\left(\frac{1}{x}\right) &= \arccot(x) - \pi &= -\frac{\pi}{2} - \arctan(x) \, , \text{ if } x < 0 \\[0.3em] \arccot\left(\frac{1}{x}\right) &= \arctan(x) &= \frac{\pi}{2} - \arccot(x) \, , \text{ if } x > 0 \\[0.3em] \arccot\left(\frac{1}{x}\right) &= \arctan(x) + \pi &= \frac{3\pi}{2} - \arccot(x) \, , \text{ if } x < 0 \end{align}</math> The identities above can be used with (and derived from) the fact that <math>\sin</math> and <math>\csc</math> are [[Multiplicative inverse|reciprocals]] (i.e. <math>\csc = \tfrac1{\sin}</math>), as are <math>\cos</math> and <math>\sec,</math> and <math>\tan</math> and <math>\cot.</math> Useful identities if one only has a fragment of a sine table: :<math>\begin{align} \arcsin(x) &= \frac{1}{2}\arccos\left(1-2x^2\right) \, , \text{ if } 0 \leq x \leq 1 \\ \arcsin(x) &= \arctan\left(\frac{x}{\sqrt{1 - x^2}}\right) \\ \arccos(x) &= \frac{1}{2}\arccos\left(2x^2-1\right) \, , \text{ if } 0 \leq x \leq 1 \\ \arccos(x) &= \arctan\left(\frac{\sqrt{1 - x^2}}{x}\right) \\ \arccos(x) &= \arcsin\left(\sqrt{1 - x^2}\right) \, , \text{ if } 0 \leq x \leq 1 \text{ , from which you get } \\ \arccos &\left(\frac{1-x^2}{1 + x^2}\right) = \arcsin \left (\frac{2x}{1 + x^2}\right) \, , \text{ if } 0 \leq x \leq 1 \\ \arcsin &\left(\sqrt{1 - x^2}\right) =\frac{\pi}{2}-\sgn(x)\arcsin(x) \\ \arctan(x) &= \arcsin\left(\frac{x}{\sqrt{1 + x^2}}\right) \\ \arccot(x) &= \arccos\left(\frac{x}{\sqrt{1 + x^2}}\right) \end{align}</math> Whenever the square root of a complex number is used here, we choose the root with the positive real part (or positive imaginary part if the square was negative real). A useful form that follows directly from the table above is :<math>\arctan(x) = \arccos\left(\sqrt{\frac{1}{1+x^2}}\right)\, , \text{ if } x\geq 0 </math>. It is obtained by recognizing that <math>\cos\left(\arctan\left(x\right)\right) = \sqrt{\frac{1}{1+x^2}} = \cos\left(\arccos\left(\sqrt{\frac{1}{1+x^2}}\right)\right)</math>. From the [[tangent half-angle formula|half-angle formula]], <math>\tan\left(\tfrac{\theta}{2}\right) = \tfrac{\sin(\theta)}{1 + \cos(\theta)}</math>, we get: :<math>\begin{align} \arcsin(x) &= 2 \arctan\left(\frac{x}{1 + \sqrt{1 - x^2}}\right) \\[0.5em] \arccos(x) &= 2 \arctan\left(\frac{\sqrt{1 - x^2}}{1 + x}\right) \, , \text{ if } -1 < x \leq 1 \\[0.5em] \arctan(x) &= 2 \arctan\left(\frac{x}{1 + \sqrt{1 + x^2}}\right) \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)