Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kernel (linear algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== *If {{math|''L'': '''R'''<sup>''m''</sup> β '''R'''<sup>''n''</sup>}}, then the kernel of {{math|''L''}} is the solution set to a homogeneous [[system of linear equations]]. As in the above illustration, if {{math|''L''}} is the operator: <math display="block"> L(x_1, x_2, x_3) = (2 x_1 + 3 x_2 + 5 x_3,\; - 4 x_1 + 2 x_2 + 3 x_3)</math> then the kernel of {{math|''L''}} is the set of solutions to the equations <math display="block"> \begin{alignat}{7} 2x_1 &\;+\;& 3x_2 &\;+\;& 5x_3 &\;=\;& 0 \\ -4x_1 &\;+\;& 2x_2 &\;+\;& 3x_3 &\;=\;& 0 \end{alignat}</math> *Let {{math|''C''[0,1]}} denote the [[vector space]] of all continuous real-valued functions on the interval [0,1], and define {{math|''L'': ''C''[0,1] β '''R'''}} by the rule <math display="block">L(f) = f(0.3).</math> Then the kernel of {{math|''L''}} consists of all functions {{math|1=''f'' β ''C''[0,1]}} for which {{math|1=''f''(0.3) = 0}}. *Let {{math|''C''<sup>β</sup>('''R''')}} be the vector space of all infinitely differentiable functions {{math|'''R''' β '''R'''}}, and let {{math|''D'': ''C''<sup>β</sup>('''R''') β ''C''<sup>β</sup>('''R''')}} be the [[differential operator|differentiation operator]]: <math display="block">D(f) = \frac{df}{dx}.</math> Then the kernel of {{math|''D''}} consists of all functions in {{math|''C''<sup>β</sup>('''R''')}} whose derivatives are zero, i.e. the set of all [[constant function]]s. *Let {{math|'''R'''<sup>β</sup>}} be the [[direct product]] of infinitely many copies of {{math|'''R'''}}, and let {{math|''s'': '''R'''<sup>β</sup> β '''R'''<sup>β</sup>}} be the [[shift operator]] <math display="block"> s(x_1, x_2, x_3, x_4, \ldots) = (x_2, x_3, x_4, \ldots).</math> Then the kernel of {{math|''s''}} is the one-dimensional subspace consisting of all vectors {{math|(''x''<sub>1</sub>, 0, 0, 0, ...)}}. *If {{mvar|V}} is an [[inner product space]] and {{mvar|W}} is a subspace, the kernel of the [[projection (linear algebra)|orthogonal projection]] {{math|''V'' β ''W''}} is the [[orthogonal complement]] to {{mvar|W}} in {{mvar|V}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)