Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kripke semantics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Intuitionistic first-order logic=== Let ''L'' be a [[first-order logic|first-order]] language. A Kripke model of ''L'' is a triple <math>\langle W,\le,\{M_w\}_{w\in W}\rangle</math>, where <math>\langle W,\le\rangle</math> is an intuitionistic Kripke frame, ''M<sub>w</sub>'' is a (classical) ''L''-structure for each node ''w'' β ''W'', and the following compatibility conditions hold whenever ''u'' β€ ''v'': * the domain of ''M<sub>u</sub>'' is included in the domain of ''M<sub>v</sub>'', * realizations of function symbols in ''M<sub>u</sub>'' and ''M<sub>v</sub>'' agree on elements of ''M<sub>u</sub>'', * for each ''n''-ary predicate ''P'' and elements ''a''<sub>1</sub>,...,''a<sub>n</sub>'' β ''M<sub>u</sub>'': if ''P''(''a''<sub>1</sub>,...,''a<sub>n</sub>'') holds in ''M<sub>u</sub>'', then it holds in ''M<sub>v</sub>''. Given an evaluation ''e'' of variables by elements of ''M<sub>w</sub>'', we define the satisfaction relation <math>w\Vdash A[e]</math>: * <math>w\Vdash P(t_1,\dots,t_n)[e]</math> if and only if <math>P(t_1[e],\dots,t_n[e])</math> holds in ''M<sub>w</sub>'', * <math>w\Vdash(A\land B)[e]</math> if and only if <math>w\Vdash A[e]</math> and <math>w\Vdash B[e]</math>, * <math>w\Vdash(A\lor B)[e]</math> if and only if <math>w\Vdash A[e]</math> or <math>w\Vdash B[e]</math>, * <math>w\Vdash(A\to B)[e]</math> if and only if for all <math>u\ge w</math>, <math>u\Vdash A[e]</math> implies <math>u\Vdash B[e]</math>, * not <math>w\Vdash\bot[e]</math>, * <math>w\Vdash(\exists x\,A)[e]</math> if and only if there exists an <math>a\in M_w</math> such that <math>w\Vdash A[e(x\to a)]</math>, * <math>w\Vdash(\forall x\,A)[e]</math> if and only if for every <math>u\ge w</math> and every <math>a\in M_u</math> , <math>u\Vdash A[e(x\to a)]</math>. Here ''e''(''x''β''a'') is the evaluation which gives ''x'' the value ''a'', and otherwise agrees with ''e''.{{refn|See a slightly different formalization in {{harvtxt|Moschovakis|2022}}}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)