Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laplace operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Three dimensions=== {{See also|Del in cylindrical and spherical coordinates}} In three dimensions, it is common to work with the Laplacian in a variety of different coordinate systems. In '''[[Cartesian coordinates]]''', <math display="block">\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.</math> In '''[[cylindrical coordinates]]''', <math display="block">\Delta f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2 },</math> where <math>\rho</math> represents the radial distance, {{math|''φ''}} the azimuth angle and {{math|''z''}} the height. In '''[[spherical coordinates]]''': <math display="block">\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2},</math> or <math display="block">\Delta f = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r f) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2},</math> by expanding the first and second term, these expressions read <math display="block">\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r}\frac{\partial f}{\partial r}+\frac{1}{r^2 \sin \theta} \left(\cos \theta \frac{\partial f}{\partial \theta} + \sin \theta \frac{\partial^2 f}{\partial \theta^2} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2},</math> <!---**********PLEASE SEE THE DISCUSSION PAGE BEFORE CHANGING THIS.**********--> where {{math|''φ''}} represents the [[azimuthal angle]] and {{math|''θ''}} the [[zenith angle]] or [[colatitude|co-latitude]]. In particular, the above is equivalent to <math>\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r}\frac{\partial f}{\partial r} + \frac{1}{r^2}\Delta_{S^2} f ,</math> where <math>\Delta_{S^2}f</math> is the [[Laplace–Beltrami operator|Laplace-Beltrami operator]] on the unit sphere. <!---**************************************************************--> In general '''[[curvilinear coordinates]]''' ({{math|''ξ''<sup>1</sup>, ''ξ''<sup>2</sup>, ''ξ''<sup>3</sup>}}): <math display="block">\Delta = \nabla \xi^m \cdot \nabla \xi^n \frac{\partial^2}{\partial \xi^m \, \partial \xi^n} + \nabla^2 \xi^m \frac{\partial}{\partial \xi^m } = g^{mn} \left(\frac{\partial^2}{\partial\xi^m \, \partial\xi^n} - \Gamma^{l}_{mn}\frac{\partial}{\partial\xi^l} \right),</math> where [[Einstein summation convention|summation over the repeated indices is implied]], {{math|''g<sup>mn</sup>''}} is the inverse [[metric tensor]] and {{math|Γ''<sup>l</sup> <sub>mn</sub>''}} are the [[Christoffel symbols]] for the selected coordinates.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)