Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Expanding an inverse distance potential=== {{main|Laplace expansion (potential)}} The Legendre polynomials were first introduced in 1782 by [[Adrien-Marie Legendre]]<ref>{{cite book |first1=A.-M. |last1=Legendre |chapter=Recherches sur l'attraction des sphéroïdes homogènes |title=Mémoires de Mathématiques et de Physique, présentés à l'Académie Royale des Sciences, par divers savans, et lus dans ses Assemblées |volume=X |pages=411–435 |location=Paris |date=1785 |orig-year=1782 |language=fr |chapter-url=http://edocs.ub.uni-frankfurt.de/volltexte/2007/3757/pdf/A009566090.pdf |url-status=dead |archive-url=https://web.archive.org/web/20090920070434/http://edocs.ub.uni-frankfurt.de/volltexte/2007/3757/pdf/A009566090.pdf |archive-date=2009-09-20 }}</ref> as the coefficients in the expansion of the [[Newtonian potential]] <math display="block">\frac{1}{\left| \mathbf{x}-\mathbf{x}' \right|} = \frac{1}{\sqrt{r^2+{r'}^2-2r{r'}\cos\gamma}} = \sum_{\ell=0}^\infty \frac{{r'}^\ell}{r^{\ell+1}} P_\ell(\cos \gamma),</math> where {{math|''r''}} and {{math|''r''′}} are the lengths of the vectors {{math|'''x'''}} and {{math|'''x'''′}} respectively and {{math|''γ''}} is the angle between those two vectors. The series converges when {{math|''r'' > ''r''′}}. The expression gives the [[gravitational potential]] associated to a [[point mass]] or the [[Coulomb potential]] associated to a [[point charge]]. The expansion using Legendre polynomials might be useful, for instance, when integrating this expression over a continuous mass or charge distribution. Legendre polynomials occur in the solution of [[Laplace's equation]] of the static [[electric potential|potential]], {{math|1=∇<sup>2</sup> Φ('''x''') = 0}}, in a charge-free region of space, using the method of [[separation of variables]], where the [[boundary conditions]] have axial symmetry (no dependence on an [[azimuth|azimuthal angle]]). Where {{math|'''ẑ'''}} is the axis of symmetry and {{math|''θ''}} is the angle between the position of the observer and the {{math|'''ẑ'''}} axis (the zenith angle), the solution for the potential will be <math display="block">\Phi(r,\theta) = \sum_{\ell=0}^\infty \left( A_\ell r^\ell + B_\ell r^{-(\ell+1)} \right) P_\ell(\cos\theta) \,.</math> {{math|''A<sub>l</sub>''}} and {{math|''B<sub>l</sub>''}} are to be determined according to the boundary condition of each problem.<ref>{{cite book|last=Jackson |first=J. D. |title=Classical Electrodynamics |url=https://archive.org/details/classicalelectro00jack_449 |url-access=limited |edition= 3rd |location=Wiley & Sons |date=1999 |page=[https://archive.org/details/classicalelectro00jack_449/page/n102 103] |isbn=978-0-471-30932-1}}</ref> They also appear when solving the [[Schrödinger equation]] in three dimensions for a central force.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)