Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lens
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Derivation ==== [[File:A Diagram for a Spherical Lens Equation with Paraxial Rays, 2024-08-27.png|thumb|A Diagram for a Spherical Lens Equation with Paraxial Rays.]] The spherical thin lens equation in [[paraxial approximation]] is derived here with respect to the right figure.<ref name="Hecht-2017b" /> The 1st spherical lens surface (which meets the optical axis at <math display="inline">\ V_1\ </math> as its vertex) images an on-axis object point ''O'' to the virtual image ''I'', which can be described by the following equation,<math display="block">\ \frac{\ n_1\ }{\ u\ } + \frac{\ n_2\ }{\ v'\ } = \frac{\ n_2 - n_1\ }{\ R_1\ } ~.</math> For the imaging by second lens surface, by taking the above sign convention, <math display="inline">\ u' = - v' + d\ </math> and <math display="block">\ \frac{ n_2 }{\ -v' + d\ } + \frac{\ n_1\ }{\ v\ } = \frac{\ n_1 - n_2\ }{\ R_2\ } ~.</math> Adding these two equations yields <math display="block">\ \frac{\ n_1\ }{ u } + \frac{\ n_1\ }{ v } = \left( n_2 - n_1 \right) \left( \frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } \right) + \frac{\ n_2\ d\ }{\ \left(\ v' - d\ \right)\ v'\ } ~.</math> For the thin lens approximation where <math>\ d \rightarrow 0\ ,</math> the 2nd term of the RHS (Right Hand Side) is gone, so <math display="block">\ \frac{\ n_1\ }{ u } + \frac{\ n_1\ }{ v } = \left( n_2 - n_1 \right) \left( \frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } \right) ~.</math> The focal length <math>\ f\ </math> of the thin lens is found by limiting <math>\ u \rightarrow - \infty\ ,</math> <math display="block">\ \frac{\ n_1\ }{\ f\ } = \left( n_2 - n_1 \right) \left( \frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } \right) \rightarrow \frac{ 1 }{\ f\ } = \left( \frac{\ n_2\ }{\ n_1\ } - 1 \right) \left( \frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } \right) ~.</math> So, the Gaussian thin lens equation is <math display="block">\ \frac{ 1 }{\ u\ } + \frac{ 1 }{\ v\ } = \frac{ 1 }{\ f\ } ~.</math> For the thin lens in air or vacuum where <math display="inline">\ n_1 = 1\ </math> can be assumed, <math display="inline">\ f\ </math> becomes <math display="block">\ \frac{ 1 }{\ f\ } = \left( n - 1 \right)\left(\frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } \right)\ </math> where the subscript of 2 in <math display="inline">\ n_2\ </math> is dropped.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)