Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear elasticity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Stress formulation==== In this case, the surface tractions are prescribed everywhere on the surface boundary. In this approach, the strains and displacements are eliminated leaving the stresses as the unknowns to be solved for in the governing equations. Once the stress field is found, the strains are then found using the constitutive equations. There are six independent components of the stress tensor which need to be determined, yet in the displacement formulation, there are only three components of the displacement vector which need to be determined. This means that there are some constraints which must be placed upon the stress tensor, to reduce the number of degrees of freedom to three. Using the constitutive equations, these constraints are derived directly from corresponding constraints which must hold for the strain tensor, which also has six independent components. The constraints on the strain tensor are derivable directly from the definition of the strain tensor as a function of the displacement vector field, which means that these constraints introduce no new concepts or information. It is the constraints on the strain tensor that are most easily understood. If the elastic medium is visualized as a set of infinitesimal cubes in the unstrained state, then after the medium is strained, an arbitrary strain tensor must yield a situation in which the distorted cubes still fit together without overlapping. In other words, for a given strain, there must exist a continuous vector field (the displacement) from which that strain tensor can be derived. The constraints on the strain tensor that are required to assure that this is the case were discovered by Saint Venant, and are called the "[[Saint-Venant's compatibility condition|Saint Venant compatibility equations]]". These are 81 equations, 6 of which are independent non-trivial equations, which relate the different strain components. These are expressed in index notation as: <math display="block">\varepsilon_{ij,km}+\varepsilon_{km,ij}-\varepsilon_{ik,jm}-\varepsilon_{jm,ik}=0.</math> In engineering notation, they are: <math display="block">\begin{align} &\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = 2 \frac{\partial^2 \epsilon_{xy}}{\partial x \partial y} \\ &\frac{\partial^2 \epsilon_y}{\partial z^2} + \frac{\partial^2 \epsilon_z}{\partial y^2} = 2 \frac{\partial^2 \epsilon_{yz}}{\partial y \partial z} \\ &\frac{\partial^2 \epsilon_x}{\partial z^2} + \frac{\partial^2 \epsilon_z}{\partial x^2} = 2 \frac{\partial^2 \epsilon_{zx}}{\partial z \partial x} \\ &\frac{\partial^2 \epsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left ( -\frac{\partial \epsilon_{yz}}{\partial x} + \frac{\partial \epsilon_{zx}}{\partial y} + \frac{\partial \epsilon_{xy}}{\partial z}\right) \\ &\frac{\partial^2 \epsilon_y}{\partial z \partial x} = \frac{\partial}{\partial y} \left ( \frac{\partial \epsilon_{yz}}{\partial x} - \frac{\partial \epsilon_{zx}}{\partial y} + \frac{\partial \epsilon_{xy}}{\partial z}\right) \\ &\frac{\partial^2 \epsilon_z}{\partial x \partial y} = \frac{\partial}{\partial z} \left ( \frac{\partial \epsilon_{yz}}{\partial x} + \frac{\partial \epsilon_{zx}}{\partial y} - \frac{\partial \epsilon_{xy}}{\partial z}\right) \end{align}</math> The strains in this equation are then expressed in terms of the stresses using the constitutive equations, which yields the corresponding constraints on the stress tensor. These constraints on the stress tensor are known as the ''Beltrami-Michell'' equations of compatibility: <math display="block">\sigma_{ij,kk} + \frac{1}{1+\nu}\sigma_{kk,ij} + F_{i,j} + F_{j,i} + \frac{\nu}{1-\nu}\delta_{i,j} F_{k,k} = 0.</math> In the special situation where the body force is homogeneous, the above equations reduce to<ref name="tribonet">{{Cite news| url=http://www.tribonet.org/wiki/elastic-deformation/ |title=Elastic Deformation|last=tribonet|date=2017-02-16 | newspaper=Tribology |access-date=2017-02-16 | language=en-US}}</ref> <math display="block"> (1+\nu)\sigma_{ij,kk}+\sigma_{kk,ij}=0.</math> A necessary, but insufficient, condition for compatibility under this situation is <math>\boldsymbol{\nabla}^4\boldsymbol{\sigma} = \boldsymbol{0}</math> or <math>\sigma_{ij,kk\ell\ell} = 0</math>.<ref name="Slau" /> These constraints, along with the equilibrium equation (or equation of motion for elastodynamics) allow the calculation of the stress tensor field. Once the stress field has been calculated from these equations, the strains can be obtained from the constitutive equations, and the displacement field from the strain-displacement equations. An alternative solution technique is to express the stress tensor in terms of [[stress functions]] which automatically yield a solution to the equilibrium equation. The stress functions then obey a single differential equation which corresponds to the compatibility equations.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)